LOJ10013曲线
题目描述
明明做作业的时候遇到了n 个二次函数s_i(x)=ax^2+bx+c ,他突发奇想设计了一个新的函数 f(x)=max{s_i(x)},i=1,2,...,n。
明明现在想求这个函数在 [0,1000] 的最小值,要求精确到小数点后四位,四舍五入。
输入格式
输入包含 t 组数据,每组第一行一个整数n ;
接下来 n 行,每行 3 个整数 a,b,c ,用来表示每个二次函数的 3 个系数。注意:二次函数有可能退化成一次。
输出格式
每组数据输出一行,表示新函数 f(x) 的在区间 [0,1000] 上的最小值。精确到小数点后四位,四舍五入。
样例
样例输入
2
1
2 0 0
2
2 0 0
2 -4 2
样例输出
0.0000
0.5000
数据范围与提示
对于 50% 的数据,1<=n<=100;
对于 100% 的数据,1<=t<=10,1<=n<=1e5 ,1<=a<=100 ,1<=|b|<=5e3 ,0<=|c|<=5e3 。
___________________________________________
这个题目用到分治中的一种特殊形式,三分。
首先,题目的真正难点在于能够看出:n个函数的最大值构成的新函数仍然是一个开口向上的波谷。
然后就是三分了。三分用来求波谷的最小值(或波峰的最大值)
以求波谷的最小值为例:
求区间[l,r]上的最小值,首先把区间长度等分成三分,分割点为ll和rr
sf=(r-l)/3
ll=l+sf,rr=r-sf;
这样区间就变成了[l,ll,rr,r]四点分成的三份。
然后求ll和rr点对应的函数值,由于是波谷,那么谷底所在点可能有三个可能:
1、在[ll,rr]区间内,由于是波谷,开口向上,那么f[l]>f[ll],f[rr]<f[r],那么可以去掉[l,ll]和[rr,r]两个区间。
2、在[l,ll]区间内,由于是波谷,开口向上,那么f[ll]<f[rr]<f[r],那么可以去掉[ll,rr]和[rr,r]两个区间。
3、在[rr,r]区间内,由于是波谷,开口向上,那么f[l]>f[ll]>f[rr],那么可以去掉[l,ll]和[ll,rr]两个区间。。
那么综合上面三种情况,如果f[ll]>f[rr],那么谷底可能在中间区[ll,rr]或右侧区[rr,r],那么左侧[l,rr]去掉;如果f[ll]<f[rr],那么谷底可能在中间区[ll,rr]或左侧区[l,ll],那么右侧[rr,r]去掉.
___________________________________________


1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn=1e5+10;
4 int a[maxn],b[maxn],c[maxn];
5 int t,n;
6 double work(double x)
7 {
8 double rt=-1e9;
9 for(int i=1;i<=n;++i)
10 rt=max(rt,a[i]*x*x+b[i]*x+c[i]);
11 return rt;
12 }
13 int main()
14 {
15 scanf("%d",&t);
16 while(t--)
17 {
18 scanf("%d",&n);
19 for(int i=1;i<=n;++i)
20 scanf("%d%d%d",a+i,b+i,c+i);
21 double l=0,r=1000,ll,rr;
22 while(l+1e-10<r)
23 {
24 double sf=(r-l)/3;
25 ll=l+sf;rr=r-sf;
26 if(work(ll)<work(rr))r=rr;
27 else l=ll;
28 }
29 printf("%.4lf\n",work((l+r)/2));
30 }
31 return 0;
32 }
LOJ10013曲线的更多相关文章
- caffe的python接口学习(7):绘制loss和accuracy曲线
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...
- ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...
- canvas贝塞尔曲线
贝塞尔曲线 Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线. 曲线定义:起始点.终止点.控制点.通过调整控制点,贝塞尔曲线的形状会发生变化. 1962年,法国数学家Pierr ...
- UIBezierPath-完善曲线
override func draw(_ rect: CGRect) { let path = UIBezierPath() // 起点 path.move(to: CGPoint(x: , y: ) ...
- 贝塞尔曲线(UIBezierPath)属性、方法汇总
UIBezierPath主要用来绘制矢量图形,它是基于Core Graphics对CGPathRef数据类型和path绘图属性的一个封装,所以是需要图形上下文的(CGContextRef),所以一般U ...
- 基于jquery实现图片拖动和曲线拖放
功能:图片的拖动.曲线的拖放和绘制 一. 准备工作 1. 点击此下载相关的文档 二. 在浏览器中运行 dragDrop.html 文件,即可看到效果 三. 效果图
- 深度掌握SVG路径path的贝塞尔曲线指令
一.数字.公式.函数.变量,哦,NO! 又又一次说起贝塞尔曲线(英语:Bézier curve,维基百科详尽中文释义戳这里),我最近在尝试实现复杂的矢量图形动画,发现对贝塞尔曲线的理解馒头那么厚,是完 ...
- 贝塞尔曲线(cubic bezier)
对于css3的Transitions,网上很多介绍,相信大家都比较了解,这里用最简单的方式介绍下: transition语法:transition:<transition-property> ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
随机推荐
- Mac电脑jsp连接mysql
四个步骤教你如何用jsp代码连接mysql 第一步:下载jdbc驱动 进入mysql官网:https://dev.mysql.com/downloads/connector/ 找到Connect/J ...
- 1.第一个QT程序
第一个QT程序 应用程序类QApplication 窗口类MyWidget 进入事件循环 a.exec() 头文件 mywidget.h QApplication 文件Demo_pro 我怎么知道我用 ...
- 常用的Git命令清单
目录 名词解释 开卷必读 一. 新建代码库 二.配置 三. 忽略某个文件的改动 四. 增加/删除文件 五. 代码提交 六. 分支 七. 标签 八. 查看信息 九. 远程同步 十. 撤销 十一. Git ...
- 安装Apache2.4 操作系统:Centos7.4
正式安装Apache2.4 操作系统:Centos7.4,(需要关闭Selinux)1.在每安装一个服务都要养成查看是否安装,如果安装则需要卸载: #[root@yankerp ~]# rpm -qa ...
- 2020再见&新的计划(建立Android体系架构)
2020,再见 关于2020,我心中有四个关键词: 疫情 年初突如其来的疫情,打破了原本生活的节奏,也没想到会笼罩全世界整整一年,希望这个世界早点好起来吧. 科比 初三的早晨,噩耗传来,我一度不敢相信 ...
- Tomca7t服务器 配置HTTP和HTTPS 同时访问
(首先你要有 ssl 证书 ,我是阿里的 ) 查看申请ssl证书(https://www.cnblogs.com/lxf-mw/p/14261303.html) 一.下载 tomcat证书(两个文件) ...
- 【JavaWeb】JSTL 标签库
JSTL 标签库 简介 JSTL(JSP Standard Tag Library),即 JSP 标准标签库.标签库是为了替换代码脚本,使得整个 jsp 页面变得更加简洁. JSTL 有五个功能不同的 ...
- LeetCode700 二叉搜索树中搜索
给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在,则返回 NULL. 例如, 给定二叉搜索树: 4 / \ 2 7 / ...
- 十五:SQL注入之oracle,Mangodb注入
Access,Mysql,mssql,mangoDB,postgresql,sqlite,oracle,sybase JSON类型的数据注入: 键名:键值 {"a":"1 ...
- docker 报错: Cannot connect to the Docker daemon at unix:///var/run/docker.sock.
最近在 Windows 子系统 WSL 上面安装了一个 ubuntu18.04, 安装完docker 跑 hello-world 的时候报错了 docker: Cannot connect to th ...