前言


纪念一下我做的第二道斜率优化$dp$题,终于自己能把代码敲出来了,然而有很智障的$bug$,把$i$写成$q[i]$,找了半天QAQ。然后写$dp$公式并优化的能力稍微强了一点(自我感觉良好),对于斜率优化$dp$"去尾"的操作理解更深刻了

描述


$1∼N$号工厂,第$i$个工厂有$P_{i}$个成品,第$i$个工厂建立仓库需要$C_{i}$的费用,该工厂距离第一个工厂的距离为$X_{i}$,编号小的工厂只能往编号大的工厂搬用成品,每单位成品搬每单位距离需要花费1,问所有成品搬到工厂里面所需的最少费用是多少 [Link]

分析


设$f[i]$为第$i$个工厂建立仓库,前$i$个工厂的成品都搬到仓库中的最小花费,则容易得到动态转移方程:

         $f[i]=min(f[j]+P_{j+1}(X_{i}-X_{j+1})+P_{j+2}(X_{i}-X_{j+2})+\cdots +P_{i-1}(X_{i}-X_{i+1}))+Ci$

通式为

               $f[i]=min(f[j]+\sum_{k=j+1}^{i-1}P_{k}\cdot X_{i}-\sum_{k=j+1}^{i-1}P_{k}\cdot X_{k})+C_{i}$

令 $s[i]=\sum_{1}^{i}P[i],g[i]=\sum_{1}^{i}P_{i}\cdot X_{i}$
则方程变为
               $f[i]=min(f[j]+X_{i}\cdot(s[i−1]−s[j])-(g[i−1]−g[j]))+C_{i}$

则对于最优决策 $j$ ,有

                 $f[j]+g[j]=X_{i}\cdot s[j]+f[i]-X_{i}\cdot s[i−1]−Ci$

也就是要找 $y=kx+b$,$k$已知,找一对$x,y$使得截距最小

Code

#include <cstdio>
#define ll long long
#define empty (head>=tail)
const int maxn = 1e6+10;
ll n, head, tail, j;
ll x[maxn], p[maxn], c[maxn];
ll q[maxn], s[maxn], g[maxn], f[maxn];
inline long double X(ll i) {return s[i];}
inline long double Y(ll i) {return f[i]+g[i];}
inline long double rate(ll j,ll k) {return (Y(k)-Y(j))/(X(k)-X(j));}
int main()
{
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &x[i], &p[i], &c[i]);
s[i] = s[i-1]+p[i], g[i] = g[i-1]+p[i]*x[i];
}
head = tail = 1;
for(int i = 1; i <= n; i++){
while(!empty&&rate(q[head],q[head+1])<x[i])head++;
j = q[head]; f[i] = f[j]+x[i]*(s[i-1]-s[j])-(g[i-1]-g[j])+c[i];
while(!empty&&rate(q[tail-1],q[tail])>rate(q[tail],i))tail--;
q[++tail] = i;
}
printf("%lld\n", f[n]);
}

思考


之前入门的题目说过,假如$g(c,b)<=g(b,a)$,那么这个$b$就没有任何用武之地了,就把这样的点去掉后再加入新的点。那么我会想到,能不能先不去掉这个$b$,直接加入新的点,就是在斜率小于$A[i]$的时候再去掉不也可以么,顶多时间长一点,然而现实给了我一发$WA$。我就去想为什么会是这个亚子?原因在于,必须保证通过前面的状态得到的$f[i]$为最优,而你的$b$可能会导致你通过原有的方式得到的$f[i]$并不是最优的,那么得到的$f[n]$自然不一定是最优解。

那我就去做了尝试,我的确没有去掉$b$,那么我只要从之前的状态里挑最优不也可以么,交上去之后发现的确可以(妥妥$WA$)。这就很头疼,也证明我的想法是不对的,因为在有$b$的前提下,你按照原来那种判断两点间斜率的方法去决定取哪个点的方法并不能确定哪个点是最优的,比如下图:

这个时候$C$是不满足要求的点,我没有去掉,之后我从$A,B,C,D$中挑选最优的点去更新$E$点,$E$对应的斜率$rate$是绿色的那条线,从最下面开始扫描,$AB$的斜率小于$rate$,扫到$B$这里停下,由于$BC$斜率大于$rate$,还是在$B$这里,之后$CD$的斜率比$rate$小,那就扫到$D$这里停下,然后通过$D$更新$E$点。但是你会发现其实$B$点比$D$点更优,这样选是不对的。但是如果我先把$C$点去掉,那么通过$AB,BD$的斜率去选择点,你会发现得到的$E$点是最优的

所以结果就是,正是因为满足要求的点之间的斜率是单调递增的才能保证每次得到的$f[i]$为最优,并且这样计算$f[i]$的确效率很高~

附上错误的代码(T_T):

#include <cstdio>
#define ll long long
#define empty (head>=tail)
const int maxn = 1e6+10;
ll n, head, tail, j;
ll x[maxn], p[maxn], c[maxn];
ll q[maxn], s[maxn], g[maxn], f[maxn];
inline long double X(ll i) {return s[i];}
inline long double Y(ll i) {return f[i]+g[i];}
inline long double rate(ll j,ll k) {return (Y(k)-Y(j))/(X(k)-X(j));}
int main()
{
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &x[i], &p[i], &c[i]);
s[i] = s[i-1]+p[i], g[i] = g[i-1]+p[i]*x[i];
}
head = tail = 1;
for (int i = 1; i <= n; i++) {
int l = head, r = tail;
while(!empty&&l<r) {
if(rate(q[l],q[l+1])<x[i]) head = l+1;
l++;
}
j = q[head]; f[i] = f[j]+x[i]*(s[i-1]-s[j])-(g[i-1]-g[j])+c[i];
q[++tail] = i;
}
printf("%lld\n", f[n]);
}

参考文章:

https://www.cnblogs.com/1625--H/p/11267043.html

[ZJOI2007]仓库建设(斜率dp优化)的更多相关文章

  1. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  2. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  3. BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)

    [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...

  4. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  5. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  6. bzoj 1096: [ZJOI2007]仓库建设 斜率優化

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2242  Solved: 925[Submit][Statu ...

  7. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

  8. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  9. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  10. [ZJOI2007]仓库建设(斜率优化)

    L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...

随机推荐

  1. C#扫盲篇(三):Action和Func委托--实话实说

    一.基础定义 老王想找老张的老婆出去耍,但是一看,老张还在厨房煮饭.于是老王就对老张隔壁的淑芬说:"等下老张吃完饭出去喝茶,你就把前门晒的苞谷收了,老张从左门出,你就收右边的苞谷,我就知道从 ...

  2. fatal error C1045: 编译器限制 : 链接规范嵌套太深

    前言 我相信你是遇到了同样的问题.通过搜索引擎来到这里的.为了不耽误排查问题的时间,我提前说明一下这篇文章所描述的问题范畴: 我遇到的问题和 c++ 模板相关: 如果我减少传递的参数的话,是有可能避免 ...

  3. rocketmq-cpp-client Visual Studio 2019 编译

    rocketmq-cpp-client Visual Studio 2019 编译 rocketmq-cpp-client 是rocketmq c++版本的 所以我们C++ 开发者使用此项目 构建 获 ...

  4. LeetCode374 猜数字大小

    我们正在玩一个猜数字游戏. 游戏规则如下:我从 1 到 n 选择一个数字. 你需要猜我选择了哪个数字.每次你猜错了,我会告诉你这个数字是大了还是小了.你调用一个预先定义好的接口 guess(int n ...

  5. 天梯赛练习 L3-016 二叉搜索树的结构 (30分)

    题目分析: 用数型结构先建树,一边输入一边建立,根节点的下标为1,所以左孩子为root*2,右孩子为root*2+1,输入的时候可用cin输入字符串也可用scanf不会超时,判断是否在同一层可以判断两 ...

  6. Docker学习笔记之使用Docker数据卷

    Docker数据卷将数据存储到主机而非容器,多个容器需要共享数据时,常常使用数据卷. 1. 为容器设置数据卷(不指定主机目录) 2. 容器与主机之间.容器与容器之间共享数据卷(指定主机目录) 3. 使 ...

  7. Oracle 10g 如何调整 sga_max_size 与 sga_target

    sga_max_size是相对于操作系统来讲的,当启动oracle时,一次性分配给oracle实例的sga不会超过sga_max_size值:而sga_target是相对于oracle这个正在运行的应 ...

  8. logicaldisk本地磁盘管理

    在网上搜了很多,但是基本都是一样的,差不多都是互相转载摘抄,就那么几个寥寥无几的例子,所以我冒了很大的风险,自己经过多次的测试,对这个命令有了一些新的认识!拿出来分享一下! LOGICALDISK   ...

  9. 函数式编程 偏函数 生成器 yield

    高阶函数 # 高阶函数def f(x): return x * x# map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Ite ...

  10. 并发编程:Actors 模型和 CSP 模型

    https://mp.weixin.qq.com/s/emB99CtEVXS4p6tRjJ2xww 并发编程:Actors 模型和 CSP 模型 ImportNew 2017-04-27