全网都是矩阵快速幂,我只会倍增DP

其实这题与 AcWing 345. 牛站 还是比较像的,那题可以矩阵快速幂 / 倍增,这题也行。

先 \(Floyd\) 预处理两点之间不用魔法最短距离 \(d_{i, j}\) 复杂度 \(O(n^3)\)

然后预处理两点之间至多用一个魔法的最短距离 \(w_{i, j}\),初始为 \(w_{i, j} = d_{i, j}\),枚举 \(i, j\) 和一条边 \((u, v, t)\) \(w_{i, j} = \min(d[i][u] - t + d[v][j])\),复杂度 \(O(n^2m)\)

然后把 \(w\) 数组当做邻接矩阵的新图,所以问题变成了走恰好 \(k\) 条边的最短路(可以理解多走不会变差,因为满足 \(w_{i, i} <= 0\)),这个问题就是 AcWing 345. 牛站 ,具体做法看 AcWing 345. 牛站的倍增 DP 思路,复杂度 \(O(n^3 \log K)\)

注意细节,走 \(0\) 条边的最短路是 \(d_{1, n}\),注意 \(f\) 的初始值。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std; typedef long long LL; const int N = 105, M = 2505, L = 20;
const LL INF = 1e18; int n, m, K, l;
LL d[N][N], w[N][N], g[L][N][N], f[N], t[N]; struct E{
int u, v, w;
} e[M]; int main() {
memset(g, 0x3f, sizeof g);
scanf("%d%d%d", &n, &m, &K);
l = log2(K);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) if (i != j) d[i][j] = INF;
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
d[e[i].u][e[i].v] = min(d[e[i].u][e[i].v], (LL)e[i].w);
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
w[i][j] = d[i][j];
for (int k = 1; k <= m; k++)
w[i][j] = min(w[i][j], d[i][e[k].u] - e[k].w + d[e[k].v][j]);
g[0][i][j] = w[i][j];
}
}
for (int c = 1; c <= l; c++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
g[c][i][j] = min(g[c][i][j], g[c - 1][i][k] + g[c - 1][k][j]);
for (int i = 1; i <= n; i++) f[i] = d[1][i];
for (int c = 0; c <= l; c++) {
if (K >> c & 1) {
for (int i = 1; i <= n; i++) t[i] = f[i];
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) f[i] = min(f[i], t[j] + g[c][j][i]);
}
}
printf("%lld\n", f[n]);
return 0;
}

NOI Online #1 入门组 魔法的更多相关文章

  1. P6474 [NOI Online #2 入门组] 荆轲刺秦王

    P6474 [NOI Online #2 入门组] 荆轲刺秦王 bfs+差分+卡常 本来我其实是场内选手,但是因为记错提交时间,晚了半小时才交,交不上了,就自动降级为了场外选手 题面复杂,不简述了 首 ...

  2. P7473 [NOI Online 2021 入门组] 重力球

    P7473 [NOI Online 2021 入门组] 重力球 题意 给你一个正方形平面,某些位置有障碍,对于平面上两个球,每次你可以改变重力方向使两个球下落到最底端,求使两个球位置重合的最小改变重力 ...

  3. NOI ONLINE 入门组 魔法 矩阵快速幂

    做了这道题我才发现NOI入门组!=NOIP普及组 题目链接 https://www.luogu.com.cn/problem/P6190 题意 给出一张有向图,你有K次机会可以反转一条边的边权,即让它 ...

  4. 洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)

    题面传送门 题意: 求有多少个数列 \(x\) 满足: \(\sum x_i=n\) \(x_i\geq x_{i+1}\) 答案对 \(p\) 取模. ...你确定这叫"入门"组 ...

  5. NOI Online 2021 入门组 T1

    Description 题目描述 Alice.Bob 和 Cindy 三个好朋友得到了一个圆形蛋糕,他们打算分享这个蛋糕. 三个人的需求量分别为 \(a, b, c\),现在请你帮他们切蛋糕,规则如下 ...

  6. [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解

    原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...

  7. [题解] [NOI Online 2021 入门组 T3] 重力球

    题目大意 在一个 \(n\times n\) 的矩形中,题目会给出 \(m\) 个障碍物.有两个小球,你可以选定四个方向(上下左右)的其中一个,小球会朝着这四个方向一直滚动,直到遇到障碍物或是矩形的边 ...

  8. P6189 [NOI Online #1 入门组] 跑步 (DP/根号分治)

    (才了解到根号分治这样的妙方法......) 将每个数当成一种物品,最终要凑成n,这就是一个完全背包问题,复杂度O(n2),可以得80分(在考场上貌似足够了......) 1 #include < ...

  9. 【NOI Online 2020】入门组 总结&&反思

    前言: 这次的NOI Online 2020 入门组我真的无力吐槽CCF的网站了,放段自己写的diss的文章,供一乐 如下:(考试后当天晚上有感而发) 今天是个好日子!!!(我都经历了什么...... ...

随机推荐

  1. 调试没有core文件的coredump

    对coredump的分析中,是依赖于core文件的,而core文件中也几乎包含了程序当前的所有状态(堆栈.内存.寄存器等).然而在实际的线上环境中,由于core文件太大.保存core文件耗时太久,出于 ...

  2. UNP——第五章,TCP客户/服务程序

    tcpser void str_echo(int sockfd) { long arg1, arg2; ssize_t n; char line[MAXLINE]; for ( ; ; ) { if ...

  3. Python_列表相减(判断长度后长的减短的)

    #定义一个方法,可进行列表相减 class V(object): def __init__(self,*value): self.value=value def __sub__(self,other) ...

  4. Windows10系统下使用Docker搭建ClickHouse开发环境

    前提 随着现在业务开展,几个业务系统的数据量开始急剧膨胀.之前使用了关系型数据库MySQL进行了一次数据仓库的建模,发现了数据量上来后,大量的JOIN操作在提高了云MySQL的配置后依然有点吃不消,加 ...

  5. 讲武德,你们要的高性能日志工具 Log4j2,来了

    Log4j 介绍过了,SLF4J 介绍过了,Logback 也介绍过了,你以为日志系列的文章就到此终结了? 不不不,我告诉你,还有一个 Log4j 2,顾名思义,它就是 Log4j 的升级版,就好像手 ...

  6. SpringSecurity之授权

    SpringSecurity之授权 目录 SpringSecurity之授权 1. 写在前面的话 2. web授权 1. 建库 2. 添加查询权限的接口 3. 前端页面的编写 4. SpringSec ...

  7. 面试官:小伙子,你给我说一下Java中什么情况会导致内存泄漏呢?

    概念 内存泄露:指程序中动态分配内存给一些临时对象,但对象不会被GC回收,它始终占用内存,被分配的对象可达但已无用.即无用对象持续占有内存或无用对象的内存得不到及时释放,从而造成的内存空间浪费. 可达 ...

  8. 使用pdfFactory为PDF文件设定查看选项

    一般情况下,大部分PDF文件都会按照默认的查看设置,以100%的尺寸显示第一页的内容.但在一些特殊情况下,PDF文件的创建者会设定其他的文件查看尺寸,或设定打开页为第N页,来达到引起阅读者关注的目的. ...

  9. JPA query between的多种方式(mongodb为例)

    背景 JPA+MongoDB查询,给定一段时间范围查询分页结果,要求时间范围包含. Page<Log> findByCtimeBetweenOrderByCtime( LocalDateT ...

  10. 基于gin的golang web开发:docker

    Golang天生适合运行在docker容器中,这得益于:Golang的静态编译,当在编译的时候关闭cgo的时候,可以完全不依赖系统环境. 一些基础 测试容器时我们经常需要进入容器查看运行情况,以下命令 ...