Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others)

Total Submission(s): 4619    Accepted Submission(s): 846


Problem Description
“Across the Great Wall, we can reach every corner in the world!” Now the citizens of Rectland want to cross the Great Wall. 

The Great Wall is a huge wall with infinite width and height, so the only way to cross is to dig holes in it. All people in Rectland can be considered as rectangles with varying width and height, and they can only dig rectangle holes in the wall. A person can
pass through a hole, if and only if the person’s width and height is no more than the hole’s width and height both. To dig a hole with width W and height H, the people should pay W * H dollars. Please note that it is only permitted to dig at most K holes for
security consideration, and different holes cannot overlap each other in the Great Wall. Remember when they pass through the wall, they must have their feet landed on the ground.

Given all the persons’ width and height, you are requested to find out the minimum cost for digging holes to make all the persons pass through the wall.
 

Input
There are several test cases. The first line of each case contains two numbers, N (1 <= N <= 50000) and K (1 <= K <= 100), indicating the number of people and the maximum holes allowed to dig. Then N lines followed, each contains two integers wi and
hi (1 <= wi, hi <= 1000000), indicating the width and height of each person.
 

Output
Output one line for each test case, indicates the minimum cost.

 

Sample Input

2 1
1 100
100 1
2 2
1 100
100 1
 

Sample Output

10000
200

这题如果用普通的区间dp会超时,要用斜率优化。先使这些矩形按宽从大到小排序,如果宽相同就按高度从高到低排序,然后从第一个开始依次把矩形加入集合,如果当前访问的矩形的高度比最后加入集合的矩形的高度小,那么最后加入集合的矩形一定能够覆盖当前访问的,这样这个矩形就可以跳过不加入集合。注意,最后进行dp的矩形一定要满足宽度递增而高度递减。然后就可以进行dp,用dp[i][j]表示前i个数分成j组所用的最小面积,那么dp[i][j]=min(dp[k][j-1]+a[k+1].h*a[i].w)(j-1<=k<i).设k1<k2且k2比k1优,那么dp[k2][j-1]+w[i]*h[k2+1]<=dp[k1][j-1]+w[i]*h[k1+1],则(dp[k2][j-1]-dp[k1][j-1])/(h[k1+1]-h[k2+1)<=w[i],这里有个注意的地方,因为分母是含k1的项减去含k2的项,所以我们要转化一下,令x=-(h[k+1],那么

分母就变为x2-x1了,又因为随着i的递增,w[i]增加,所以如果满足这个斜率不等式,k2一定是比k1优的,所以可以删除k1.


#include<iostream>
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 999999999999999999
#define maxn 50006
ll dp[maxn][106];
int s[maxn][106];
struct node{
ll w,h;
}a1[maxn],a[maxn]; bool cmp(node a,node b){
if(a.w==b.w)return a.h>b.h;
return a.w>b.w;
}
int q[111111],j; ll getup(int k){
return dp[k][j-1];
}
ll getdown(int k){
return -a[k+1].h;
} int main()
{
int n,m,i,tot,k,front,rear;
ll ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%lld%lld",&a1[i].w,&a1[i].h);
}
sort(a1+1,a1+1+n,cmp);
tot=1;a[1].w=a1[1].w;a[1].h=a1[1].h;
for(i=2;i<=n;i++){
if(a1[i].h<=a[tot].h)continue;
tot++;
a[tot].w=a1[i].w;a[tot].h=a1[i].h;
}
reverse(a+1,a+1+tot);
for(i=1;i<=tot;i++){
dp[i][1]=a[i].w*a[1].h;
} for(j=2;j<=m;j++){
front=rear=0;
q[rear]=j-1;
for(i=j;i<=tot;i++){
while(front<rear && getup(q[front+1])-getup(q[front])<=a[i].w*(getdown(q[front+1])-getdown(q[front])) ){
front++;
}
k=q[front];
dp[i][j]=dp[k][j-1]+a[k+1].h*a[i].w;
while(front<rear && (getup(q[rear])-getup(q[rear-1]))*(getdown(i)-getdown(q[rear]))>=(getup(i)-getup(q[rear]) )*(getdown(q[rear])-getdown(q[rear-1])) ){
rear--;
}
rear++;
q[rear]=i;
}
}
ans=inf;
for(j=1;j<=m;j++){
ans=min(ans,dp[tot][j]);
}
printf("%lld\n",ans);
}
return 0;
}

hdu3669 Cross the Wall的更多相关文章

  1. hdu 3669 Cross the Wall(斜率优化DP)

    题目连接:hdu 3669 Cross the Wall 题意: 现在有一面无限大的墙,现在有n个人,每个人都能看成一个矩形,宽是w,高是h,现在这n个人要通过这面墙,现在只能让你挖k个洞,每个洞不能 ...

  2. HDU 3669 Cross the Wall

    题目大意 给定 \(N\) 个矩形的宽和高, \((h_1, w_1), (h_2, w_2), \dots, (h_n w_n)\) . 现需要确定 \(k\) (\(k \le K\), \(K\ ...

  3. HDU 3669 Cross the Wall(斜率DP+预处理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3669 题目大意:有n(n<=50000)个矩形,每个矩形都有高和宽,你可以在墙上最多挖k个洞使得 ...

  4. UVALive 5097 Cross the Wall

    贪心思想,$dp$,斜率优化. 首先将人按照$w$从大到小排序,如果$w$一样,按$h$从大到小排.这样一来,某位置之后,比该位置$h$小的都是不需要考虑的. 因此,形成了如下图所示的结果: 即第一个 ...

  5. 动态规划DP的斜率优化 个人浅解 附HDU 3669 Cross the Wall

    首先要感谢叉姐的指导Orz 这一类问题的DP方程都有如下形式 dp[i] = w(i) + max/min(a(i)*b(j) + c(j)) ( 0 <= j < i ) 其中,b, c ...

  6. HDU 3669 [Cross the Wall] DP斜率优化

    问题分析 首先,如果一个人的\(w\)和\(h\)均小于另一个人,那么这个人显然可以被省略.如果我们将剩下的人按\(w[i]\)递增排序,那么\(h[i]\)就是递减. 之后我们考虑DP. 我们设\( ...

  7. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

  8. KUANGBIN带你飞

    KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题    //201 ...

  9. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

随机推荐

  1. ubuntu环境下搭建Hadoop集群中必须需要注意的问题

    博主安装的hadoop是3.1.3这里是按照厦门大学那个博客安装的,在安装与启动过程中,费了不少事,特此记录一下问题. 安装的连接: 安装环境:http://dblab.xmu.edu.cn/blog ...

  2. docker 数据卷的挂载和使用

    容器之间的数据共享技术, Docker容器产生的数据同步到本地 卷技术 --> 目录挂载, 将容器内的目录挂载到服务器上 使用命令来挂载 -v # 可以挂载多个目录 docker run -it ...

  3. MyISAM与InnoDB两者之间区别与选择(转)

    Mysql在V5.1之前默认存储引擎是MyISAM:在此之后默认存储引擎是InnoDB MyISAM:默认表类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Acces ...

  4. show slave status常用参数备忘

    mysql> show slave status\G*************************** 1. row *************************** Slave_IO ...

  5. 【Linux】find查找空文件夹

    linux下批量删除空文件(大小等于0的文件)的方法 find . -name "*" -type f -size 0c | xargs -n 1 rm -f 就是删除1k大小的文 ...

  6. Spring Aop中四个重要概念,切点,切面,连接点,通知

    1. 通知: 就是我们编写的希望Aop时执行的那个方法.我们通过Aop希望我们编写的方法在目标方法执行前执行,或者执行后执行.2. 切点:切点就是我们配置的满足我们条件的目标方法.比如我们规定:名字前 ...

  7. html简单基础

    标签语法 标签的语法: <标签名 属性1="属性值1" 属性2="属性值2"-->内容部分</标签名> <标签名 属性1=&quo ...

  8. Linq.Expressions扩展ExpressionExtension

    手上有一个以前项目用到的.NET工具类封装的DLL. 正好又想试一下动态LAMBDA表达式,用.NET Reflector看一下源码. public static class ExpressionEx ...

  9. 安卓开发视频教程!想找工作的你还不看这份资料就晚了!Android校招面试指南

    前言 准备面试其实已经准备了挺久了,当时打算面试准备了差不多以后,跟公司谈谈涨薪的事情,谈不拢的话,就年后直接找其他的公司.谁想到婚假还没休完,老板就在公司宣布了撤出上海的决定,愿意去深圳的就去,不愿 ...

  10. CentOS7,非LVM根分区扩容步骤:

    1.查看现有的分区大小 非LVM分区,目前磁盘大小为40G,根分区总容量为40G,(是自定义分区安装的) 2.关机增加磁盘大小至100G 如果你们是vmwaer虚拟软件安装的那如下入扩容: 3.查看磁 ...