Bézout恒等式
写在前面:
记录了个人的学习过程,同时方便复习
整理自网络
非原创部分会标明出处
目录
|
结论
(Bézout / 裴蜀 / 贝祖 / 比舒)
In elementary number theory, Bézout's identity (also called Bézout's lemma) is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d Then, there exist integers x and y such that ax + by = d More generally, the integers of the form ax + by are exactly the multiples of d ——wikipedia |
译: 在初等数论中,Bézout恒等式(也称为Bézout引理)是下列引理: Bézout恒等式: 设a和b为具有最大公因数d的整数 存在整数x和y,使得ax+by=d 即ax+by恰好是d的倍数 |
wikipedia上说的很清楚,就不再重复说了
证明
(某一种证法)
有a,b∈Z*
记d == gcd(a,b),对ax + by == d,两边同时除以d,可得(a1)x + (b1)y == 1,其中gcd(a1,b1) == 1
转证(a1)x + (b1)y == 1,由带余除法:
① (a1) == (q1)(b1) + (r1),其中0 < r1 < b1
② (b1) == (q2)(r1) + (r2),其中0 < r2 < r1
③ (r1) == (q3)(r2) + (r3),其中0 < r3 < r2
.....
④ (rn-4) == (qn-2)(rn-3) + (rn-2)
⑤ (rn-3) == (qn-1)(rn-2) + (rn-1)
⑥ (rn-2) == (qn)(rn-1) + (rn)
⑦ (rn-1) == (qn+1)(rn) + 1
故,由⑦和⑥推出(rn-2)An-2 + (rn-1)Bn-1 == 1
再结合⑤推出(rn-3)An-3 + (rn-2)Bn-2 == 1
再结合④推出(rn-4)An-4 + (rn-3)Bn-3 == 1
.....
再结合③推出(r1)A1 + (r2)B2 == 1
再结合②推出(b1)A0 + (r1)B0 == 1
再结合①推出(a1)x + (b1)y == 1
证毕
——bia度百科
拓展
- n个整数间
设有a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1 + x2*a2 + ... + xn*an == d
——bia度百科
Bézout恒等式的更多相关文章
- 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式
基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.
- CF #404 (Div. 2) D. Anton and School - 2 (数论+范德蒙恒等式)
题意:给你一个由'('和')'组成的字符串,问你有多少个子串,前半部分是由'('组成后半部分由')'组成 思路:枚举这个字符串中的所有'('左括号,它左边的所有'('左括号的个数为num1,它的右边的 ...
- 朱世杰恒等式的应用-以CF841C为例
题目大意 Codeforces 841C Leha and Function. 令\(F(n,k)\)为在集合\(\{x|x \in [1,n]\}\)中选择一个大小为k的子集,最小元素的期望值. 给 ...
- Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...
- MT【221】几个常用的多元恒等式
1.$\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}{a_ib_j}=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}{a_j ...
- MT【208】埃尔米特恒等式
设$S=\sum\limits_{k=1}^{+\infty}[\dfrac{116+3^{k-1}}{3^k}]\\T=\sum\limits_{k=1}^{+\infty}[\dfrac{116+ ...
- MT【35】用复数得到的两组恒等式
特别的,当$r\rightarrow1^{-}$时有以下两个恒等式: 第二个恒等式有关的自主招生试题参考博文MT[31]傅里叶级数为背景的三角求和 评:利用两种展开形式得到一些恒等式是复数里经常出现的 ...
- hdu1799-循环多少次?-(组合恒等式)
循环多少次? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- python练习笔记——组合恒等式
排列组合结合恒等式 已知从n个物品中取出m个,则存在一个组合恒等式. C(n, m)=C(n, n-m)=C(n-1, m-1)+C(n-1,m) 其中C(n,0) = 1 求:从5取3 和 10 取 ...
随机推荐
- LeetCode116 每个节点的右向指针
给定一个二叉树 struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } 填充它的每个 ...
- at定时任务
1)at是只执行一次,执行完后任务删除.at的守护进程atd会以后台模式运行,检查作业队列来运行.2)默认 atd每60秒巡逻一次,有作业时候,检查作业时间,如果和当前时间一样,就执行任务3)在使用a ...
- Nginx 安装与配置教程
标签: Nginx Linux Windows 配置 描述: Ubuntu 下以及 Windows 下 Nginx 的配置:配置详解:有关 Nginx 如何配置 Nginx 在 Ubuntu 下的安装 ...
- docker cp 拷贝文件 和 进入容器
进入正在运行的容器 # 进入容器 新开一个终端 # docker exec -it 容器id /bin/bash docker exec -it eaac94ef6926 /bin/bash # 进入 ...
- 【函数分享】每日PHP函数分享(2021-1-19)
substr 函数返回字符串的一部分.注释:如果 start 参数是负数且 length 小于或等于 start,则 length 为 0. string substr (string $string ...
- 【Linux】扩大swap分区
今天安装oracle的时候,提示我swap分区过小.需要最少3g以上 但是安装系统了,想要扩大swap分区怎么办呢 下面来介绍如何扩大swap分区 按步骤介绍 Red Hat linux 如何增加sw ...
- kubernets之服务发现
一 服务与pod的发现 1.1 服务发现pod是很显而易见的事情,通过简称pod的标签是否和服务的标签一致即可,但是pod是如何发现服务的呢?这个问题其实感觉比较多余,但是接下来你就可能不这么想了 ...
- LeetCode589. N叉树的前序遍历
题目 法一.递归 1 class Solution { 2 public: 3 vector<int>ans; 4 void dfs(Node* root){ 5 if(root!=NUL ...
- URL重定向 - Pikachu
概述: 不安全的url跳转问题可能发生在一切执行了url地址跳转的地方.如果后端采用了前端传进来的(可能是用户传参,或者之前预埋在前端页面的url地址)参数作为了跳转的目的地,而又没有做判断的话就可能 ...
- JMS监听Oracle AQ
该文档中,oracle版本为11g,jdk版本1.8,java项目为maven构建的springboot项目,springboot的版本为2.1.6,并使用了定时任务来做AQ监听的重连功能,解决由于外 ...