CountDownLatch概述

日常开发中,经常会遇到类似场景:主线程开启多个子线程执行任务,需要等待所有子线程执行完毕后再进行汇总。

在同步组件CountDownLatch出现之前,我们可以使用join方法来完成,简单实现如下:

public class JoinTest {
public static void main(String[] args) throws InterruptedException {
Thread A = new Thread(() -> {
try {
Thread.sleep(1000);
System.out.println("A finish!");
} catch (InterruptedException e) {
e.printStackTrace();
}
});
Thread B = new Thread(() -> {
try {
Thread.sleep(1000);
System.out.println("B finish!"); } catch (InterruptedException e) {
e.printStackTrace();
}
});
System.out.println("main thread wait ..");
A.start();
B.start();
A.join(); // 等待A执行结束
B.join(); // 等待B执行结束
System.out.println("all thread finish !");
}
}

但使用join方法并不是很灵活,并不能很好地满足某些场景的需要,而CountDown则能够很好地代替它,并且相比之下,提供了更多灵活的特性:

CountDownLatch相比join方法对线程同步有更灵活的控制,原因如下:

  1. 调用子线程的join()方法后,该线程会一直被阻塞直到子线程运行完毕,而CountDownLatch使用计数器来允许子线程运行完毕或者运行中递减计数,await方法返回不一定必须等待线程结束。
  2. 使用线程池管理线程时,添加Runnable到线程池,没有办法再调用线程的join方法了。

使用案例与基本思路

public class TestCountDownLatch {

    public static volatile CountDownLatch countDownLatch = new CountDownLatch(2);

    public static void main (String[] args) throws InterruptedException {
ExecutorService executorService = Executors.newFixedThreadPool(2);
executorService.submit(() -> {
try {
Thread.sleep(1000);
System.out.println("A finish!"); } catch (InterruptedException e) {
e.printStackTrace();
} finally {
countDownLatch.countDown();
}
});
executorService.submit(() -> {
try {
Thread.sleep(1000);
System.out.println("B finish!"); } catch (InterruptedException e) {
e.printStackTrace();
} finally {
countDownLatch.countDown();
}
});
System.out.println("main thread wait ..");
countDownLatch.await();
System.out.println("all thread finish !");
executorService.shutdown();
}
}
// 结果
main thread wait ..
B finish!
A finish!
all thread finish !
  • 构建CountDownLatch实例,构造参数传参为2,内部计数初始值为2。
  • 主线程构建线程池,提交两个任务,接着调用countDownLatch.await()陷入阻塞。
  • 子线程执行完毕之后调用countDownLatch.countDown(),内部计数器减1。
  • 所有子线程执行完毕之后,计数为0,此时主线程的await方法返回。

类图与基本结构

public class CountDownLatch {
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L; Sync(int count) {
setState(count);
}
//...
} private final Sync sync; public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
} public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
} public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
} public void countDown() {
sync.releaseShared(1);
} public long getCount() {
return sync.getCount();
} public String toString() {
return super.toString() + "[Count = " + sync.getCount() + "]";
}
}

CountDownLatch基于AQS实现,内部维护一个Sync变量,继承了AQS。

在AQS中,最重要的就是state状态的表示,在CountDownLatch中使用state表示计数器的值,在初始化的时候,为state赋值。

几个同步方法实现比较简单,如果你不熟悉AQS,推荐你瞅一眼前置文章:

接下来我们简单看一看实现,主要学习两个方法:await()和countdown()。

void await()

当线程调用CountDownLatch的await方法后,线程会被阻塞,除非发生下面两种情况:

  1. 内部计数器值为0,getState() == 0
  2. 被其他线程中断,抛出异常,也就是currThread.interrupt()
    // CountDownLatch.java
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
// AQS.java
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
// 如果线程中断, 则抛出异常
if (Thread.interrupted())
throw new InterruptedException();
// 由子类实现,这里再Sync中实现,计数器为0就可以返回,否则进入AQS队列等待
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
// Sync
// 计数器为0 返回1, 否则返回-1
private static final class Sync extends AbstractQueuedSynchronizer {
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
}

boolean await(long timeout, TimeUnit unit)

当线程调用CountDownLatch的await方法后,线程会被阻塞,除非发生下面三种情况:

  1. 内部计数器值为0,getState() == 0,返回true。
  2. 被其他线程中断,抛出异常,也就是currThread.interrupt()
  3. 设置的timeout时间到了,超时返回false。
    // CountDownLatch.java
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
// AQS.java
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}

void countDown()

调用该方法,内部计数值减1,递减后如果计数器值为0,唤醒所有因调用await方法而被阻塞的线程,否则跳过。

    // CountDownLatch.java
public void countDown() {
sync.releaseShared(1);
}
// AQS.java
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Sync
private static final class Sync extends AbstractQueuedSynchronizer {
protected boolean tryReleaseShared(int releases) {
// 循环进行CAS操作
for (;;) {
int c = getState();
// 一旦为0,就返回false
if (c == 0)
return false;
int nextc = c-1;
// CAS尝试将state-1,只有这一步CAS成功且将state变成0的线程才会返回true
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}

总结

  • CountDownLatch相比于join方法更加灵活且方便地实现线程间同步,体现在以下几点:

    • 调用子线程的join()方法后,该线程会一直被阻塞直到子线程运行完毕,而CountDownLatch使用计数器来允许子线程运行完毕或者运行中递减计数,await方法返回不一定必须等待线程结束。
    • 使用线程池管理线程时,添加Runnable到线程池,没有办法再调用线程的join方法了。
  • CountDownLatch使用state表示内部计数器的值,初始化传入count。

  • 线程调用countdown方法将会原子性地递减AQS的state值,线程调用await方法后将会置入AQS阻塞队列中,直到计数器为0,或被打断,或超时等才会返回,计数器为0时,当前线程还需要唤醒由于await()被阻塞的线程。

参考阅读

  • 《Java并发编程之美》

Java并发包源码学习系列:同步组件CountDownLatch源码解析的更多相关文章

  1. Java并发包源码学习系列:CLH同步队列及同步资源获取与释放

    目录 本篇学习目标 CLH队列的结构 资源获取 入队Node addWaiter(Node mode) 不断尝试Node enq(final Node node) boolean acquireQue ...

  2. Java并发包源码学习系列:同步组件CyclicBarrier源码解析

    目录 CyclicBarrier概述 案例学习 类图结构及重要字段 内部类Generation及相关方法 void reset() void breakBarrier() void nextGener ...

  3. Java并发包源码学习系列:同步组件Semaphore源码解析

    目录 Semaphore概述及案例学习 类图结构及重要字段 void acquire() 非公平 公平策略 void acquire(int permits) void acquireUninterr ...

  4. Java并发包源码学习系列:AQS共享式与独占式获取与释放资源的区别

    目录 Java并发包源码学习系列:AQS共享模式获取与释放资源 独占式获取资源 void acquire(int arg) boolean acquireQueued(Node, int) 独占式释放 ...

  5. Java并发包源码学习系列:ReentrantLock可重入独占锁详解

    目录 基本用法介绍 继承体系 构造方法 state状态表示 获取锁 void lock()方法 NonfairSync FairSync 公平与非公平策略的差异 void lockInterrupti ...

  6. Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析

    目录 ReadWriteLock读写锁概述 读写锁案例 ReentrantReadWriteLock架构总览 Sync重要字段及内部类表示 写锁的获取 void lock() boolean writ ...

  7. Java并发包源码学习系列:详解Condition条件队列、signal和await

    目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...

  8. Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类

    目录 LockSupport概述 park与unpark相关方法 中断演示 blocker的作用 测试无blocker 测试带blocker JDK提供的demo 总结 参考阅读 系列传送门: Jav ...

  9. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

随机推荐

  1. 一文打尽端口复用 VS Haproxy端口复用

    出品|MS08067实验室(www.ms08067.com) 本文作者:Spark(Ms08067内网安全小组成员) 1.概述   Haproxy是一个使用c语言开发的高性能负载均衡代理软件,提供tc ...

  2. JVM虚拟机Class类文件研究分析

    前言 为了研究Class文件,先编写一个最简单的代码: package com.courage; public class T0100_ByteCode01 { } 之所以说最简单,是因为这个类里面任 ...

  3. 无刷电调基础知识以及BLHeli固件烧录和参数调整

    标题: 无刷电调基础知识以及BLHeli固件烧录和参数调整 作者: 梦幻之心星 sky-seeker@qq.com 标签: [#基础知识,#电调,#BLHeli,#固件,#烧录,#调参] 目录: [电 ...

  4. Web信息收集之搜索引擎-Zoomeye Hacking

    Web信息收集之搜索引擎-Zoomeye Hacking https://www.zoomeye.org ZoomEye(钟馗之眼)是一个面向网络空间的搜索引擎,"国产的Shodan&quo ...

  5. K8s 二、(1、kubeadm部署Kubernetes集群)

    准备工作 满足安装 Docker 项目所需的要求,比如 64 位的 Linux 操作系统.3.10 及以上的内核版本: x86 或者 ARM 架构均可: 机器之间网络互通,这是将来容器之间网络互通的前 ...

  6. web.xml启动时调用java类方法

    <listener> <listener-class>com.test</listener-class> //该类为java类路径标示要执行的接口 需在web.xm ...

  7. 31.FTP简介

    1.FTP 是一种在互联网中进行文件传输的协议,基于客户端/服务器模式,默认使用20.21号端口,其中端口20(数据端口)用于进行数据传输,端口21(命令端口)用于接受客户端发出的相关FTP 命令与参 ...

  8. 12.su 命令与sudo 服务

     1.su 命令:解决切换用户身份的需求,使得当前用户在不退出登录的情况下,顺畅地切换到其他用户. 比如从root 管理员切换至普通用户: [root@Centos test]# id uid=0(r ...

  9. 8. Linux重要的环境变量

    1.Linux 系统执行命令的4个步骤 第 1 步:判断用户是否以绝对路径或相对路径的方式输入命令(如/bin/ls),如果是的话则直接执行.  第 2 步:Linux 系统检查用户输入的命令是否为& ...

  10. 弱网测试之Fidder

    是用Fidder可以模拟若罔测试. 1.Fiider设置 fiddler中选中Rules->Cutomize Rules,在文件中搜索关键字:m_SimulateModem: 修改m_Simul ...