Kejin Player

HDOJ-6656

  • 设f[i]为从i升级到i+1期望需要的金钱,由于每级都是能倒退或者升级到i+1,所以询问从l,r的期望金钱可以直接前缀和,那么推导每一级升级需要的期望钱也可以用前缀和推导
  • 设sum[i]=f[1]+f[2]....f[i] ,那么从 l 升级到 r 就是sum[r-1]-sum[l-1]。
  • 对于f[i] ,有p的概率交钱直接变成i+1,有(1-p)的概率回到x级,那么回到x级后想要升级到i+1,需要sum[i-1]-sum[x-1]升回到i级,再+f[i]从i级打到i+1级
  • 所以可以列出方程  f[i]=pa[i]+(1-p)(sum[i-1]-sum[x-1]+f[i]+a[i]),//这里的是求期望
  • 原文链接:https://blog.csdn.net/liufengwei1/article/details/99326686
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const long long mod=1e9+7;
long long sum[500005];
long long dp[500005];
long long quick_mod(long long a,long long b){
long long ans=1;
a=a%mod;
while(b>0){
if(b%2==1)
ans=ans*a%mod;
b=b/2;
a=(a*a)%mod;
}
return ans%mod;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
int n,q;
cin>>n>>q;
long long r,s,x,a;
sum[0]=dp[0]=0;
for(int i=1;i<=n;i++){
cin>>r>>s>>x>>a;
int p=r*quick_mod(s,mod-2)%mod;
dp[i]=(a+(1-p+mod)%mod*(a+sum[i-1]-sum[x-1]+mod)%mod*quick_mod(p,mod-2)%mod)%mod;
sum[i]=(sum[i-1]+dp[i]+mod)%mod;
}
for(int i=0;i<q;i++){
int l,r;
cin>>l>>r;
long long ans=(sum[r-1]-sum[l-1]+mod)%mod;
cout<<ans<<endl;
}
}
return 0;
}

HDOJ-6656(数论+逆元)的更多相关文章

  1. ACM模板合集

    写在前面: 第一年小白拿铜牌,第二年队友出走,加上疫情原因不能回校训练导致心底防线彻底崩盘,于是选择退役. 自从退役之后,一直想我打了那么久的ACM,什么也没留下觉得很难受,突然想到我打ACM的时候, ...

  2. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  3. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  4. ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

    数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a% ...

  5. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  6. HDU 6656 Kejin Player (期望DP 逆元)

    2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...

  7. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  8. 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)

    题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...

  9. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

随机推荐

  1. Happy 2006 POJ - 2773 容斥原理+二分

    题意: 找到第k个与m互质的数 题解: 容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))- 二分复杂度也是O(log(n)) 容斥原理+二分这个r 代码: 1 #include ...

  2. Nacos学习与实战

    1. 什么是Nacos 官网:https://nacos.io/zh-cn/index.html Nacos是阿里巴巴集团开源的项目,Nacos 致力于帮助您发现.配置和管理微服务. Nacos提供了 ...

  3. CF1462-E2. Close Tuples (hard version)

    本题为hard版,还有一个easy版,区别在于k和m的取值不同. 题意: 给出一个由n个数字组成的数组 \(a\).现在定义一种子集为\(\{A_1, A_2, A_3, ..., A_m\}\),使 ...

  4. 记一次小米手机安装Google Play(其他手机类似)

    记一次小米手机安装Google Play(其他手机类似) 最近换了一款小米10青春版,性价比很高,对于开发者而言,手机自带商店的软件内容往往不能满足需求,而需要单独定制习惯性的APP,博主通过最近的尝 ...

  5. Pycharm缺少环境变量+无法获取libcudnn.so.6

    在终端输入: echo LD_LIBRARY_PATH, 并将其内容 添加至Pycharm的 run -> Edit configuration -> Environment variab ...

  6. Chrome DevTools & performance & keywords

    Chrome DevTools & performance & keywords performance / 优化性能 https://developers.google.com/we ...

  7. sentry.event & UnhandledRejection & promise rejection

    sentry.event & UnhandledRejection & promise rejection Non-Error promise rejection captured s ...

  8. 前端 Web 异常监控系统 All In One

    前端 Web 异常监控系统 All In One Sentry https://sentry.io trackjs https://trackjs.com/ rollbar https://rollb ...

  9. 加密算法大全图解 :密码体系,对称加密算法,非对称加密算法,消息摘要, Base64,数字签名,RSA,DES,MD5,AES,SHA,ElGamal,

    1. 加密算法大全: ***************************************************************************************** ...

  10. NMAP 使用教程!,nmap [Scan Type(s)] [Options] {target specification} , nmap -sn 192.168.2.0/24 , raspberry pi 3

    NMAP 使用教程 https://nmap.org/man/zh/man-briefoptions.html 当Nmap不带选项运行时,该选项概要会被输出,最新的版本在这里 http://www.i ...