HDOJ-6656(数论+逆元)
Kejin Player
HDOJ-6656
- 设f[i]为从i升级到i+1期望需要的金钱,由于每级都是能倒退或者升级到i+1,所以询问从l,r的期望金钱可以直接前缀和,那么推导每一级升级需要的期望钱也可以用前缀和推导
- 设sum[i]=f[1]+f[2]....f[i] ,那么从 l 升级到 r 就是sum[r-1]-sum[l-1]。
- 对于f[i] ,有p的概率交钱直接变成i+1,有(1-p)的概率回到x级,那么回到x级后想要升级到i+1,需要sum[i-1]-sum[x-1]升回到i级,再+f[i]从i级打到i+1级
- 所以可以列出方程 f[i]=pa[i]+(1-p)(sum[i-1]-sum[x-1]+f[i]+a[i]),//这里的是求期望
- 原文链接:https://blog.csdn.net/liufengwei1/article/details/99326686
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const long long mod=1e9+7;
long long sum[500005];
long long dp[500005];
long long quick_mod(long long a,long long b){
long long ans=1;
a=a%mod;
while(b>0){
if(b%2==1)
ans=ans*a%mod;
b=b/2;
a=(a*a)%mod;
}
return ans%mod;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
int n,q;
cin>>n>>q;
long long r,s,x,a;
sum[0]=dp[0]=0;
for(int i=1;i<=n;i++){
cin>>r>>s>>x>>a;
int p=r*quick_mod(s,mod-2)%mod;
dp[i]=(a+(1-p+mod)%mod*(a+sum[i-1]-sum[x-1]+mod)%mod*quick_mod(p,mod-2)%mod)%mod;
sum[i]=(sum[i-1]+dp[i]+mod)%mod;
}
for(int i=0;i<q;i++){
int l,r;
cin>>l>>r;
long long ans=(sum[r-1]-sum[l-1]+mod)%mod;
cout<<ans<<endl;
}
}
return 0;
}
HDOJ-6656(数论+逆元)的更多相关文章
- ACM模板合集
写在前面: 第一年小白拿铜牌,第二年队友出走,加上疫情原因不能回校训练导致心底防线彻底崩盘,于是选择退役. 自从退役之后,一直想我打了那么久的ACM,什么也没留下觉得很难受,突然想到我打ACM的时候, ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)
题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
随机推荐
- CodeForces - 948C (前缀和+二分)
博客界面的小人搞不好导致无心写博客 题意:tyd非常喜欢玩雪,下雪下了n天,第i天她会堆一堆大小为Vi的雪堆,但因为天气原因,每堆雪会融化Ti,问每天总共融化了多少雪: 直接上代码+注释 1 #inc ...
- poj3083 Children of the Candy Cor
Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...
- Codeforces 1144F Graph Without Long Directed Paths DFS染色
题意: 输入一张有向图,无自回路和重边,判断能否将它变为有向图,使得图中任意一条路径长度都小于2. 如果可以,按照输入的边的顺序输出构造的每条边的方向,构造的边与输入的方向一致就输出1,否则输出0. ...
- MySQL 索引的类型
主键索引(PRIMARY KEY) # 主键 = 唯一键索引 + 非空 + 只能设置一个字段 # 创建表的时候创建主键索引 mysql> create table test(id int not ...
- VScode 配置c++环境
参考 https://code.visualstudio.com/docs/cpp/config-mingw https://zhuanlan.zhihu.com/p/77645306 主要 http ...
- Redis内存管理中的LRU算法
在讨论Redis内存管理中的LRU算法之前,先简单说一下LRU算法: LRU算法:即Least Recently Used,表示最近最少使用页面置换算法.是为虚拟页式存储管理服务的,是根据页面调入内存 ...
- HDU 4049 Tourism Planning(状压DP)题解
题意:m个城市,n个人,让这n个人按固定顺序走遍m个城市.每个城市有一个单人票价pi.每个人在每个城市能获得vij的价值.如果多个人在同一城市,那么会额外获得价值,给出一张n * n价值表,额外价值为 ...
- HDU 4866 Shooting(主席树)题解
题意:在一个射击游戏里面,游戏者可以选择地面上[1,X]的一个点射击,并且可以在这个点垂直向上射击最近的K个目标,每个目标有一个价值,价值等于它到地面的距离.游戏中有N个目标,每个目标从L覆盖到R,距 ...
- Vue dynamic component All In One
Vue dynamic component All In One Vue 动态组件 vue 2.x https://vuejs.org/v2/guide/components-dynamic-asyn ...
- very useful English Acronyms in Programming for Programmer
very useful English Acronyms in Programming for Programmer alias / shorthand / acronyms 别名 / 简写 / 缩略 ...