赛道修建类似,先对\(k\)进行二分,将最值问题转化为判定问题。

在判定一个\(k\)是否合法时,贪心去考虑,一个节点下面的若干条链在合并时,一条链肯定和另一条使它合并后恰好满足长度限制的链合并最优。因此我们用\(multiset\)来进行维护,一条长度为\(len\)的链,去查询第一条长度大于等于\(k-len\)的链,若找不到,即不合法。

再考虑到一个非根节点在合并链时,是可以有一条链无法合并,其它链两两配对,那么剩下那个链就往上继续寻找配对即可,但根节点肯定是要两两配对。

所以在合并时,可以增加一个长度为\(0\)的链,来使非根节点的链数量为奇数,使根节点的链数量为偶数,方便一些细节的处理。

实现就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 200010
using namespace std;
typedef multiset<int>::iterator mul;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n;
bool flag;
int f[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
void dfs(int x,int fa,int len)
{
if(!flag) return;
multiset<int> s;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==fa) continue;
dfs(y,x,len);
s.insert(f[y]+1);
}
int size=s.size();
bool tag=false;
if((x==1&&size&1)||(x!=1&&!(size&1))) s.insert(0);
while(!s.empty())
{
if(!flag) break;
int l1;
mul t1=s.begin(),t2;
l1=*t1,s.erase(t1),t2=s.lower_bound(len-l1);
if(x==1)
{
if(t2==s.end())
{
flag=false;
break;
}
s.erase(t2);
}
else
{
if(t2==s.end()&&tag)
{
flag=false;
break;
}
if(t2==s.end()&&!tag) f[x]=l1,tag=true;
if(t2!=s.end()) s.erase(t2);
}
}
}
bool check(int x)
{
flag=true,memset(f,0,sizeof(f)),dfs(1,0,x);
return flag;
}
int main()
{
read(n);
for(int i=1;i<n;++i)
{
int a,b;
read(a),read(b);
add(a,b),add(b,a);
}
int l=1,r=n-1,ans=1;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d",ans);
return 0;
}

题解 洛谷 P6142 【[USACO20FEB]Delegation P】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. elasticsearch中query和filter的区别

    参考博客来自: https://mp.weixin.qq.com/s/tiiveCW3W-oDIgxvlwsmXA?utm_medium=hao.caibaojian.com&utm_sour ...

  2. centos 6.5 dhcp桥接方式上网络设置

    首先虚拟机和主机之间采用桥接模式 然后在虚拟机中进行设置,首先进入到目录 /etc/sysconfig/network-scripts/ [root@localhost ~]# cd /etc/sys ...

  3. Python表达式与生成式

    Python表达式与生成式 前言 本章节中的所有知识点均为在不丧失代码可读性的前提下最大程度精简代码的一系列操作.其中涉及到一些性能问题(微乎其微)可以不做考虑. 三元表达式 三元表达式中有三个重要的 ...

  4. keras中loss与val_loss的关系

    loss是训练集的损失值,val_loss是测试集的损失值 以下是loss与val_loss的变化反映出训练走向的规律总结: train loss 不断下降,test loss不断下降,说明网络仍在学 ...

  5. Java工具类——日期相关的类

    前言 在日常的开发工作当中,我们经常需要用到日期相关的类(包括日期类已经处理日期的类),所以,我就专门整理了一篇关于日期相关的类,希望可以帮助到大家. 正文 一.日期类介绍 在 Java 里面,操作日 ...

  6. js页面跳转的问题(跳转到父页面、最外层页面、本页面)

    "window.location.href"."location.href"是本页面跳转 "parent.location.href"是上一 ...

  7. pycharm一直显示Process finished with exit code 0

    后来排查发现原来是解释器的问题我之前使用的解释器是pycharm提供的虚拟解释器#####如何查看解释器点file–>new projects 如果选择的是2就是使用了pycharm提供的虚拟解 ...

  8. Linux虚拟机下安装Oracle 11G教程图文解说

    1.安装环境 操作系统:Red hat 6.5 内存:内存最低要求256M (使用:grep MemTotal /proc/meminfo 命令查看) 交换空间:SWAP交换空间大小根据内存大小决定( ...

  9. 安装完kali linux之后要做的10件事——113p.cn

    1.添加国内更新源(可能不是最好的) vim /etc/apt/source.list 科技大学# deb http://mirrors.ustc.edu.cn/kali sana main non- ...

  10. centos7 mysql8.0替换为5.7版本

    今天按教程把mysql 的yum文件下载下来安装好,是8.0版本的,安装社区版的时候发现现在的8.0版本有1.7G那么大,就想重新安装5.7版本的,然后网上又找到一个5.7版本的yum,发现不能替换, ...