赛道修建类似,先对\(k\)进行二分,将最值问题转化为判定问题。

在判定一个\(k\)是否合法时,贪心去考虑,一个节点下面的若干条链在合并时,一条链肯定和另一条使它合并后恰好满足长度限制的链合并最优。因此我们用\(multiset\)来进行维护,一条长度为\(len\)的链,去查询第一条长度大于等于\(k-len\)的链,若找不到,即不合法。

再考虑到一个非根节点在合并链时,是可以有一条链无法合并,其它链两两配对,那么剩下那个链就往上继续寻找配对即可,但根节点肯定是要两两配对。

所以在合并时,可以增加一个长度为\(0\)的链,来使非根节点的链数量为奇数,使根节点的链数量为偶数,方便一些细节的处理。

实现就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 200010
using namespace std;
typedef multiset<int>::iterator mul;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n;
bool flag;
int f[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
void dfs(int x,int fa,int len)
{
if(!flag) return;
multiset<int> s;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y==fa) continue;
dfs(y,x,len);
s.insert(f[y]+1);
}
int size=s.size();
bool tag=false;
if((x==1&&size&1)||(x!=1&&!(size&1))) s.insert(0);
while(!s.empty())
{
if(!flag) break;
int l1;
mul t1=s.begin(),t2;
l1=*t1,s.erase(t1),t2=s.lower_bound(len-l1);
if(x==1)
{
if(t2==s.end())
{
flag=false;
break;
}
s.erase(t2);
}
else
{
if(t2==s.end()&&tag)
{
flag=false;
break;
}
if(t2==s.end()&&!tag) f[x]=l1,tag=true;
if(t2!=s.end()) s.erase(t2);
}
}
}
bool check(int x)
{
flag=true,memset(f,0,sizeof(f)),dfs(1,0,x);
return flag;
}
int main()
{
read(n);
for(int i=1;i<n;++i)
{
int a,b;
read(a),read(b);
add(a,b),add(b,a);
}
int l=1,r=n-1,ans=1;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d",ans);
return 0;
}

题解 洛谷 P6142 【[USACO20FEB]Delegation P】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. JavaWeb网上图书商城完整项目--24.注册页面的css样式实现

    现在框架已经做好了,即下来我们要对页面进行装饰了,第一步给每一个元素添加id 1.最外面的div添加id为divMain 2.第二个div添加id为divTitle,里面的span对应的id为span ...

  2. java 中的自动装箱和拆箱操作

    在前面的文章中提到,Java为每种基本数据类型都提供了对应的包装器类型,至于为什么会为每种基本数据类型提供包装器类型在此不进行阐述,有兴趣的朋友可以查阅相关资料.在Java SE5之前,如果要生成一个 ...

  3. mysql 中order by的优化

    当时看了尚硅谷周阳老师的mysql视频优化在order by 优化的时候还存在一点问题:后来阅读了mysql的官方文档,对该问题已经测定研究清楚了 内容如下: http://blog.51cto.co ...

  4. 数据库char varchar nchar nvarchar,编码Unicode,UTF8,GBK等,Sql语句中文前为什么加N(一次线上数据存储乱码排查)

    背景 公司有一个数据处理线,上面的数据经过不同环境处理,然后上线到正式库.其中一个环节需要将数据进行处理然后导入到另外一个库(Sql Server).这个处理的程序是老大用python写的,处理完后进 ...

  5. Python初识函数

    Python初识函数 函数理论篇 什么是函数 在编程语言中的函数不同于数学中的函数.不管是数学上的函数还是编程语言中的函数都是为了完成特定的某一功能而诞生的,他们的区别在于: 1.数学中的函数当输入的 ...

  6. 入门大数据---基于Zookeeper搭建Kafka高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...

  7. 入门大数据---Anaconda安装

    1. 什么是Anaconda? Anaconda是一个开源的Python发行版本,python是一个编译器,如果不使用Anaconda那么安装起来会比较痛苦,各个库之间的依赖性就很难连接的很好.Ana ...

  8. Tensorflow与Keras自适应使用显存

    Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方 ...

  9. 半导体质量管理_Stargate

    监控您的SPC活动 生产质量指标概述 应定期评估统计信息,以便您可以更好地利用统计过程控制.通过这种方式,您可以快速发现质量缺陷并采取适当的措施做出反应.LineWorks STARGATE提供了生产 ...

  10. Docker(六)容器数据卷

    容器数据卷 docker的理念回顾 将应用和环境打包成一个镜像 需求:数据可以持久化和同步 使用数据卷 指定路径挂载 docker run -it -v 主机目录:容器内目录 # 测试 [root@h ...