hiho欧拉路·二 --------- Fleury算法求欧拉路径
分析:
小Ho:这种简单的谜题就交给我吧!
小Hi:真的没问题么?
<10分钟过去>
小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了。
小Hi:哎,我就知道你会遇到问题。
小Ho:小Hi快来帮帮我!
小Hi:好了,好了。让我们一起来解决这个问题。
<小Hi思考了一下>
小Hi:原来是这样。。。小Ho你仔细观察这个例子:

因为相连的两个数字总是相同的,不妨我们只写一次,那么这个例子可以写成:3-2-4-3-5-1。6个数字刚好有5个间隙,每个间隙两边的数字由恰好对应了一块骨牌。
如果我们将每一个数字看作一个点,每一块骨牌看作一条边。你觉得是怎么样的呢?
小Ho:以这个例子来说的话,就是:

要把所有的骨牌连起来,也就是把所有的边都走一次。咦,这不是欧拉路问题么!
小Hi:没错,这问题其实就是一个欧拉路的问题,不过和上一次不一样的在于,这一次我们要找出一条欧拉路径。
小Ho:那我们应该如何来找一条路径呢?
小Hi:我们还是借用一下上次的例子吧
使用我们上一次证明欧拉路判定的方法,我们在这个例子中找到了2条路径:
L1: 4-5-2-3-6-5
L2: 2-4-1-2
假设我们栈S,记录我们每一次查找路径时的结点顺序。当我们找到L1时,栈S内的情况为:
S: 4 5 2 3 6 5 [Top]
此时我们一步一步出栈并将这些边删除。当我们到节点2时,我们发现节点2刚好是L1与L2的公共节点。并且L2满足走过其他边之后回到了节点2。如果我们在这个地方将L2先走一遍,再继续走L1不就刚好走过了所有边么。
而且在上一次的证明中我们知道,除了L1之外,其他的路径L2、L3...一定都满足起点与终点为同一个点。所以从任意一个公共节点出发一定有一条路径回到这个节点。
由此我们得到了一个算法:
在原图中找一个L1路径
从L1的终点往回回溯,依次将每个点出栈。并检查当前点是否还有其他没有经过的边。若存在则以当前点为起点,查找L2,并对L2的节点同样用栈记录重复该算法。
当L1中的点全部出栈后,算法结束。
在这里我们再来一个有3层的例子:

在这个例子中:
L1: 1-2-6-5-1
L2: 2-3-7-2
L3: 3-4-8-3
第一步时我们将L1压入栈S,同时我们用一个数组Path来记录我们出栈的顺序:
S: [1 2 6 5 1]
Path:
然后出栈到节点2时我们发现了2有其他路径,于是我们把2的另一条路径加入:
S: 1 [2 3 7 2]
Path: 1 5 6
此时L2已经走完,然后再开始弹出元素,直到我们发现3有其他路径,同样压入栈:
S: 1 2 [3 4 8 3]
Path: 1 5 6 2 7
之后依次弹出剩下的元素:
S:
Path: 1 5 6 2 7 3 8 4 3 2 1
此时的Path就正好是我们需要的欧拉路径。
小Ho:原来这样就能求出欧拉路,真是挺巧妙的。
小Hi:而且这个算法在实现时也有很巧妙的方法。因为DFS本身就是一个入栈出栈的过程,所以我们直接利用DFS的性质来实现栈,其伪代码如下:
DFS(u):
While (u存在未被删除的边e(u,v))
删除边e(u,v)
DFS(v)
End
PathSize ← PathSize + 1
Path[ PathSize ] ← u
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std; const int N = ;
int n, m, flag, top, sum, du[N], ans[], map[N][N]; void dfs(int x)
{
ans[++top] = x;
for(int i = ; i <= n; i++)
{
if(map[x][i] >= )
{
map[x][i]--;
map[i][x]--;
dfs(i);
break;
}
}
} void fleury(int x)
{
top = ;
ans[top] = x;
while(top > )
{
int k = ;
for(int i = ; i <= n; i++)//判断是否可扩展
{
if(map[ans[top]][i] >= )//若存在一条从ans[top]出发的边 那么就是可扩展
{k = ; break;}
}
if(k == )//该点x没有其他的边可以先走了(即不可扩展), 那么就输出它
{
printf("%d ", ans[top]);
top--;
}
else if(k == )//如可扩展, 则dfs可扩展的哪条路线
{
top--;//这需要注意
dfs(ans[top+]);
}
}
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
memset(du, , sizeof(du));
memset(map, , sizeof(map)); for(int i = ; i <= m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
map[x][y]++; //记录边, 因为是无向图所以加两条边, 两个点之间可能有多条边
map[y][x]++;
du[x]++;
du[y]++;
}
flag = ; // flag标记开始点。 如果所有点度数全为偶数那就从1开始搜
sum = ;
for(int i = ; i <= n; i++)
{
if(du[i] % == )
{
sum++;
flag = i;// 若有奇数边, 从奇数边开始搜
}
}
if(sum == || sum == )
fleury(flag);
}
return ;
}
hiho欧拉路·二 --------- Fleury算法求欧拉路径的更多相关文章
- HihoCoder1181欧拉路(Fleury算法求欧拉路径)
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
- Fleury算法求欧拉路径
分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...
- HihoCoder1182 欧拉路(Fleury算法)
描述 小Hi和小Ho破解了一道又一道难题,终于来到了最后一关.只要打开眼前的宝箱就可以通关这个游戏了. 宝箱被一种奇怪的机关锁住: 这个机关是一个圆环,一共有2^N个区域,每个区域都可以改变颜色,在黑 ...
- hihocoder 1181 欧拉路.二
传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...
- [hihoCoder] 第五十周: 欧拉路·二
题目1 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角 ...
- hihoCoder #1181: 欧拉路·二 (输出路径)
题意: 给定一个图,要求打印出任一条欧拉路径(保证图肯定有欧拉路). 思路: 深搜的过程中删除遍历过的边,并在回溯时打印出来.在深搜时会形成多个环路,每个环都有一个或多个结点与其他环相扣,这样就可以产 ...
- Fleury算法 求欧拉回路
Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...
- hiho 1098 最小生成树二·Kruscal算法 (最小生成树)
题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析, ...
- 【HIHOCODER 1181】欧拉路·二
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
随机推荐
- 用Swashbuckle给ASP.NET Core的项目自动生成Swagger的API帮助文档
博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:用Swashbuckle给ASP.NET Core的项目自动生成Swagger的API帮助文档.
- HTML5画布Canvas
一.Canvas概念介绍 1.概念 Canvas : 画布 2.作用 : HTML5 Canvas 元素用于图形的绘制, 通过脚本(通常是JavaScript)来完成.它本身只是个图形容器,必须使用脚 ...
- 教你50招提升ASP.NET性能(十四):使用startMode属性来减少ASP.NET站点加载时间
(25)Use the startMode attribute to reduce the load time for your ASP.NET site 招数25: 使用startMode属性来减少 ...
- C# 钩子HOOK专题(1)
目录 基本概念 运行机制 钩子类型 作者 基本概念 钩子(Hook),是Windows消息处理机制的一个平台,应用程序可以在上面设置子程以监视指定窗口的某种消息,而且所监视的窗口可以是其他进程 ...
- Hyper-V网络配置
Hyper-V虚拟交换机类型应用: 外部虚拟网络: 可以实现虚拟机之间.虚拟机和物理机.虚拟机和外部网络的通信. 生产环境不勾选“允许管理操作系统共享此网络适配器”,勾选之后会为主机创建虚拟网卡,会实 ...
- Codeforces Beta Round #51 B. Smallest number dfs
B. Smallest number Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/pro ...
- sqoop的安装与使用
1.什么是Sqoop Sqoop即 SQL to Hadoop ,是一款方便的在传统型数据库与Hadoop之间进行数据迁移的工具.充分利用MapReduce并行特点以批处理的方式加快传输数据.发展至今 ...
- 05.pathinfo的两种模式与模版和控制器之间的关系
<?php function dump($data){ echo '<pre>'; var_dump($data); echo '</pre>'; } dump($_SE ...
- Android自定义radiobutton(文字靠左,选框靠右)
<RadioButton android:id="@+id/rb_never" android:layout_width="fill_parent" an ...
- 网络IPC:套接字之寻址
在学习用套接字做一些有意义的事情之前,需要知道如何确定一个目标通信进程. 进程的标识有两个部分:计算机的网络地址可以帮助标识网络上想与之通信的计算机,而服务可以帮助标识计算机上特定的进程. 1.字节序 ...