//感觉刘汝佳老师的思维真的太厉害了orz
/*摘录书上的一段话: 只需一个小小的优化即可降低时间复杂度:先求一次原图(不购买任何套餐)的最小生
成树,得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,则枚举套餐之
后再求最小生成树时,图上的边已经寥寥无几。
为什么可以这样呢?首先回顾一下,在Kruskal算法中,哪些边不会进入最小生成树。答
案是:两端已经属于同一个连通分量的边。买了套餐以后,相当于一些边的权变为0,而对
于不在套餐中的每条边e,排序在e之前的边一个都没少,反而可能多了一些权值为0的边,
所以在原图Kruskal时被“扔掉”的边,在后面的Kruskal中也一样会被扔掉。*/

// UVa1151 Buy or Build
// Rujia Liu
#include<cstdio>
#include<cmath>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;

 + ;
;
int n;
int x[maxn], y[maxn], cost[maxq];
vector<int> subn[maxq];

int pa[maxn];
int findset(int x) { return pa[x] != x ? pa[x] = findset(pa[x]) : x; } 

struct Edge {
  int u, v, d;
  Edge(int u, int v, int d):u(u),v(v),d(d) {}
  bool operator < (const Edge& rhs) const {
    return d < rhs.d;
  }
};

// initialize pa and sort e before calling this method
// cnt is the current number of components
int MST(int cnt, const vector<Edge>& e, vector<Edge>& used) {  //找出原图跑一边kruskal之后用过的边
  ) ;
  int m = e.size();
  ;
  used.clear();
  ; i < m; i++) {
    int u = findset(e[i].u), v = findset(e[i].v);
    int d = e[i].d;
    if(u != v) {
      pa[u] = v;
      ans += d;
      used.push_back(e[i]);
      ) break;
    }
  }
  return ans;
}

int main() {
  int T, q;
  scanf("%d", &T);
  while(T--) {
    scanf("%d%d", &n, &q);
    ; i < q; i++) {
      int cnt;
      scanf("%d%d", &cnt, &cost[i]);
      subn[i].clear();
      while(cnt--) {
        int u;
        scanf("%d", &u);
        subn[i].push_back(u-);
      }
    }
    ; i < n; i++) scanf("%d%d", &x[i], &y[i]);

    vector<Edge> e, need;
    ; i < n; i++)
      ; j < n; j++) {
        int c = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
        e.push_back(Edge(i, j, c));
      }

    ; i < n; i++) pa[i] = i;
    sort(e.begin(), e.end());

    int ans = MST(n, e, need);
    ; mask < (<<q); mask++) {  //枚举套餐,二进制法
      // union cities in the same sub-network
      ; i < n; i++) pa[i] = i;
      ;
      ; i < q; i++) <<i)) {
        c += cost[i];
        ; j < subn[i].size(); j++) {
          ]);
          if(u != v) { pa[u] = v; cnt--; }
        }
      }
      vector<Edge> dummy;
      ans = min(ans, c + MST(cnt, need, dummy));
    }
    printf("%d\n", ans);
    if(T) printf("\n");
  }
  ;
}

UVA1151的更多相关文章

  1. UVa1151 Buy or Build

    填坑(p.358) 以前天真的以为用prim把n-1条边求出来就可以 现在看来是我想多了 #include<cstdio> #include<cstring> #include ...

  2. 【最小生成树+子集枚举】Uva1151 Buy or Build

    Description 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q< ...

  3. Buy or Build(UVa1151)

    如果枚举每个套餐,并每次都求最小生成树,总时间复杂度会很高,因而需要先求一次原图的最小生成树,则枚举套餐之后需要考虑的边大大减少了. 具体见代码: #include<cstdio> #in ...

  4. 洛谷 题解 UVA1151 【买还是建 Buy or Build】

    [题意] 平面上有\(n(n<=1000)\)个点,你的任务是让所有n个点联通.为此,你可以新建一些边,费用等于两个端点的欧几里得距离平方.另外还有\(q(q<=8)\)个套餐可以购买,如 ...

  5. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  6. UVa 1151 买还是建

    https://vjudge.net/problem/UVA-1151 题意: 平面上有n个点,你的任务是让所有n个点连通.为此,你可以新建一些边,费用等于两个端点的距离平方和.另外还有q个套餐可以购 ...

  7. uva 1511 最小生成树

    https://vjudge.net/problem/UVA-1151 题意,给出N个点以及二维坐标,可以在任意两点间建立通路,代价是两点欧几里得距离的平方,同时有q个套餐,套餐x有qx个点,代价是q ...

随机推荐

  1. 【转】使用Xcode和Instruments调试解决iOS内存泄露

    原文网址:http://blog.csdn.net/totogo2010/article/details/8233565 虽然iOS 5.0版本之后加入了ARC机制,由于相互引用关系比较复杂时,内存泄 ...

  2. 基于CentOS与VmwareStation10搭建Oracle11G RAC 64集群环境:2.搭建环境-2.6. 安装Oracle所依赖的必要包

    2.6. 安装Oracle所依赖的必要包 2.6.1. 检查Oracle所依赖的必要rpm包 [root@localhost /]#rpm -q binutils compat-libstdc elf ...

  3. crontab的安装及crontab命令介绍

    前一天学习了 at 命令是针对仅运行一次的任务,循环运行的例行性计划任务,linux系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工作,因此这个 ...

  4. 《C++ primer》--第1,2章小结

    来源:http://blog.csdn.net/wangqiulin123456/article/details/8483853 1.变量初始化:      定义变量时,应该给变量赋初始值,除非确定将 ...

  5. Windows执行打开文件命令

    ShellExecute(NULL, "open",  localFile.c_str(),  NULL, NULL, SW_SHOW);          会调用该文件类型关联的 ...

  6. 用正则表达式在注册页面(js/aspx.cs)的验证

    1.验证邮箱(用户名) JS页面中: 首先定义变量和正则 var usermail = $("#usermail" ).val(); var username= /^([a-zA- ...

  7. Asp.Net学习进度备忘(第一步:ASP.NET Web Forms)

    书签:“Web Pages”和“MVC”跳过:另外跳过的内容有待跟进 __________________ 学习资源:W3School. _________________ 跳过的内容: 1.ASP. ...

  8. R 环境内存限制的更改

    由于R语言非常消耗内存,所以做较大数据的处理时需要增加内存空间,有以下种方式: 一. 在未开启R之前,在cmd中,输入下面指令 r −−max−mem− s i z e =4Gb 二. 在开启R之后, ...

  9. 【IDE】SharpDevelop

    SharpDevelop 这个轻型的开发工具支持多种程序语言,包括C#.java以及VB.NET,同时还支持多种语言界面,象任何爱好者开发的工具一样.这个编辑器的界面风格类似于Office XP以及V ...

  10. jQuery Mobile 页面事件总结

    一.页面初始化事件(Page initiallization) 在页面创建前,当页面创建时,以及在页面初始化之后.只在第一次加载时执行. 1. pagebeforecreate 页面创建前 [sour ...