Gym 100531H Problem H. Hiking in the Hills 二分
Problem H. Hiking in the Hills
题目连接:
http://codeforces.com/gym/100531/attachments
Description
Helen is hiking with her friends in a highland. Their plan is to hike from their camp A to a beautiful
showplace B.
Unfortunately, Helen started feeling dizzy due to altitude sickness. Help her group find a route such that
the topmost height on that route is as small as possible.
Input
The input file contains full information about the landscape of a square region 106 × 106
in the following
format. The first line contains integer n — the number of triangles in the landscape (2 ≤ n ≤ 2000).
Each of following n lines contains nine integers xi1, yi1, zi1, xi2, yi2, zi2, xi3, yi3, zi3 — coordinates of a
triangle. All coordinates belong to the closed interval [0, 106
]. The two last lines contain three integers
each: xA, yA, zA and xB, yB, zB — coordinates of the camp A and the showplace B.
The given triangles are guaranteed to describe a consistent continuous landscape. Projections of triangles
onto XY plane are non-degenerate and fill the square without overlapping. A vertex of one triangle never
lays inside an edge of another triangle. Points A and B belong to the landscape surface and are different.
Output
Output a polyline route from A to B with the smallest possible topmost height. The first line should
contain m, the number of vertices in this polyline. Each of following m lines should contain three integer
coordinates of a polyline vertex: xi
, yi
, and zi
. Vertices must be listed along the polyline, from A to B
(including these two endpoints).
All coordinates of polyline vertices should be integer. Each polyline edge must belong to some triangle
from the input file (possibly, to its edge). The number of vertices in the polyline must not exceed 5n.
Sample Input
8
1000000 0 0 1000000 1000000 150000 600000 600000 400000
0 1000000 0 600000 600000 400000 600000 1000000 300000
0 1000000 0 400000 300000 150000 600000 600000 400000
400000 0 200000 1000000 0 0 400000 300000 150000
400000 300000 150000 1000000 0 0 600000 600000 400000
600000 600000 400000 1000000 1000000 150000 600000 1000000 300000
0 0 0 400000 0 200000 400000 300000 150000
0 1000000 0 0 0 0 400000 300000 150000
100000 700000 37500
900000 400000 137500
Sample Output
4
100000 700000 37500
400000 300000 150000
900000 150000 100000
900000 400000 137500
Hint
题意
给你一个多面体,每个平面都是一个三角形
然后给你一个A点和B点,你需要输出一个从A到B的路径,使得这条路径的最高点最低
题解:
首先,走点一定是可行的,所以我们就可以不用去考虑边。
在一个三角形内的话,就连一条边。
然后我们直接二分高度,然后每次CHECK A是否能到B 就好了
注意精度有毒。。。
代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
double x,y,z;
bool operator<(const node& p) const
{
if(z==p.z&&y==p.y)return x<p.x;
if(z==p.z)return y<p.y;
return z<p.z;
}
};
struct Tri
{
node p[3];
};
Tri tri[5006];
map<node,int> H;
map<int,node> T;
int tot = 1;
node A,B;
vector<int> E[7000];
int vis[7000];
int n;
void init()
{
memset(vis,0,sizeof(vis));
H.clear();
T.clear();
tot = 1;
for(int i=0;i<7000;i++)
E[i].clear();
memset(tri,0,sizeof(tri));
}
double eps = 1e-2;
double dis(node aa,node bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y)+(aa.z-bb.z)*(aa.z-bb.z));
}
double area(node aa,node bb,node cc)
{
double l1 = dis(aa,bb);
double l2 = dis(aa,cc);
double l3 = dis(bb,cc);
double pp = (l1+l2+l3)/2.0;
return sqrt(pp*(pp-l1)*(pp-l2)*(pp-l3));
}
int inRan(Tri kkk,node ttt)
{
double a1 = area(kkk.p[0],kkk.p[1],ttt);
double a2 = area(kkk.p[0],kkk.p[2],ttt);
double a3 = area(kkk.p[1],kkk.p[2],ttt);
double a4 = area(kkk.p[0],kkk.p[1],kkk.p[2]);
if(fabs(a4-a1-a2-a3)<=eps)return 1;
return 0;
}
void dfs(int x,int h)
{
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs(v,h);
}
}
int check(double h)
{
if(A.z>h||B.z>h)return 0;
memset(vis,0,sizeof(vis));
dfs(H[A],h);
if(vis[H[B]]==1)return 1;
return 0;
}
vector<node> TTT;
int flag = 0;
void dfs2(int x,double h)
{
if(flag)return;
TTT.push_back(T[x]);
if(x==H[B])
{
flag = 1;
cout<<TTT.size()<<endl;
for(int i=0;i<TTT.size();i++)
printf("%.0f %.0f %.0f\n",TTT[i].x,TTT[i].y,TTT[i].z);
return;
}
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs2(v,h);
TTT.pop_back();
}
}
int main()
{
freopen("hiking.in","r",stdin);
freopen("hiking.out","w",stdout);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<3;j++)
{
scanf("%lf%lf%lf",&tri[i].p[j].x,&tri[i].p[j].y,&tri[i].p[j].z);
if(H[tri[i].p[j]]==0)
{
T[tot] = tri[i].p[j];
H[tri[i].p[j]] = tot++;
}
}
for(int j=0;j<3;j++)
{
for(int k=j+1;k<3;k++)
{
E[H[tri[i].p[j]]].push_back(H[tri[i].p[k]]);
E[H[tri[i].p[k]]].push_back(H[tri[i].p[j]]);
}
}
}
scanf("%lf%lf%lf",&A.x,&A.y,&A.z);
scanf("%lf%lf%lf",&B.x,&B.y,&B.z);
if(H[A]==0)
{
T[tot] = A;
H[A] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],A))
{
for(int j=0;j<3;j++)
{
E[H[A]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[A]);
}
}
}
}
if(H[B]==0)
{
T[tot] = B;
H[B] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],B))
{
for(int j=0;j<3;j++)
{
E[H[B]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[B]);
}
}
}
}
double l = -2.0,r = 3000050.0;
for(int i=1;i<=100;i++)
{
double mid = (l+r)/2.0;
if(check(mid))r=mid;
else l=mid;
}
memset(vis,0,sizeof(vis));
TTT.clear();
dfs2(H[A],r+1);
}
Gym 100531H Problem H. Hiking in the Hills 二分的更多相关文章
- Codeforces Gym 100610 Problem H. Horrible Truth 瞎搞
Problem H. Horrible Truth Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1006 ...
- Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉
Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...
- codeforce gym/100495/problem/K—Wolf and sheep 两圆求相交面积 与 gym/100495/problem/E—Simple sequence思路简述
之前几乎没写过什么这种几何的计算题.在众多大佬的博客下终于记起来了当时的公式.嘚赶快补计算几何和概率论的坑了... 这题的要求,在对两圆相交的板子略做修改后,很容易实现.这里直接给出代码.重点的部分有 ...
- 2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem H. Password Service dp
Problem H. Password Service 题目连接: http://www.codeforces.com/gym/100253 Description Startups are here ...
- 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题
Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...
- 实验12:Problem H: 整型数组运算符重载
Home Web Board ProblemSet Standing Status Statistics Problem H: 整型数组运算符重载 Problem H: 整型数组运算符重载 Tim ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem H
Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...
- 清北学堂入学测试P4751 H’s problem(h)
P4751 H’s problem(h) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 小H是一个喜欢逛街的女孩子,但是由于上了大学 ...
- Problem H
Problem Description 穿过幽谷意味着离大魔王lemon已经无限接近了! 可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个 ...
随机推荐
- Yii 显示错误信息(Fatal Error,Warning)在页面上
Yii由于设计上对于一些php奇怪问题的顾虑,并没有像cake,kohana一样把php错误信息打印在页面上. 遇到错误时,只是显示白页,这让没有经验的programmer会一头雾水. 实际上通常vh ...
- Windows Server 2012 R2 设置 smtp 服务器
Windows Server 2012/2012 R2:安装和配置 SMTP 服务器 安装 SMTP 服务器 以下是安装 SMTP 服务器功能的步骤: 打开“服务器管理器”:单击键盘上的 Window ...
- Struts2注解 特别注意
1 Struts2注解的作用 使用注解可以用来替换struts.xml配置文件!!! 2 导包 必须导入struts2-convention-plugin-2.3.15.jar包,它在struts2安 ...
- macos+apache+php+phpmyadmin 的整合过程梳理
启动Apache 有两种方法: 打开“系统设置偏好(System Preferences)” -> “共享(Sharing)” -> “Web共享(Web Sharing)”. 打开“终端 ...
- SQL Server 索引 之 书签查找 <第十一篇>
一.书签查找的概念 书签可以帮助SQL Server快速从非聚集索引条目导向到对应的行,其实这东西几句话我就能说明白. 如果表有聚集索引(区段结构),那么书签就是从非聚集索引找到聚集索引后,利用聚集索 ...
- jquery call方法和apply方法接触
call方法: 语法:call([thisObj[,arg1[, arg2[, [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. 说明: call 方法可以用来 ...
- CSS 居中大全
<center> text-align:center 在父容器里水平居中 inline 文字,或 inline 元素 vertical-align:middle 垂直居中 inline 文 ...
- 一、 使用存储过程实现数据分页(Sql Server 2008 R2)
1.废话不多说了,直接上代码.调用这个存储过程只需要传递 表名,排序字段,搜索字段,以及页码,页码数量,搜索值(可空) create PROCEDURE NewPage --通用的分页存储过程,百万数 ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- (转载)ETL利器Kettle实战应用解析系列一【Kettle使用介绍】
http://www.cnblogs.com/limengqiang/archive/2013/01/16/kettleapply1.html ETL利器Kettle实战应用解析系列一[Kettle使 ...