Gym 100531H Problem H. Hiking in the Hills 二分
Problem H. Hiking in the Hills
题目连接:
http://codeforces.com/gym/100531/attachments
Description
Helen is hiking with her friends in a highland. Their plan is to hike from their camp A to a beautiful
showplace B.
Unfortunately, Helen started feeling dizzy due to altitude sickness. Help her group find a route such that
the topmost height on that route is as small as possible.
Input
The input file contains full information about the landscape of a square region 106 × 106
in the following
format. The first line contains integer n — the number of triangles in the landscape (2 ≤ n ≤ 2000).
Each of following n lines contains nine integers xi1, yi1, zi1, xi2, yi2, zi2, xi3, yi3, zi3 — coordinates of a
triangle. All coordinates belong to the closed interval [0, 106
]. The two last lines contain three integers
each: xA, yA, zA and xB, yB, zB — coordinates of the camp A and the showplace B.
The given triangles are guaranteed to describe a consistent continuous landscape. Projections of triangles
onto XY plane are non-degenerate and fill the square without overlapping. A vertex of one triangle never
lays inside an edge of another triangle. Points A and B belong to the landscape surface and are different.
Output
Output a polyline route from A to B with the smallest possible topmost height. The first line should
contain m, the number of vertices in this polyline. Each of following m lines should contain three integer
coordinates of a polyline vertex: xi
, yi
, and zi
. Vertices must be listed along the polyline, from A to B
(including these two endpoints).
All coordinates of polyline vertices should be integer. Each polyline edge must belong to some triangle
from the input file (possibly, to its edge). The number of vertices in the polyline must not exceed 5n.
Sample Input
8
1000000 0 0 1000000 1000000 150000 600000 600000 400000
0 1000000 0 600000 600000 400000 600000 1000000 300000
0 1000000 0 400000 300000 150000 600000 600000 400000
400000 0 200000 1000000 0 0 400000 300000 150000
400000 300000 150000 1000000 0 0 600000 600000 400000
600000 600000 400000 1000000 1000000 150000 600000 1000000 300000
0 0 0 400000 0 200000 400000 300000 150000
0 1000000 0 0 0 0 400000 300000 150000
100000 700000 37500
900000 400000 137500
Sample Output
4
100000 700000 37500
400000 300000 150000
900000 150000 100000
900000 400000 137500
Hint
题意
给你一个多面体,每个平面都是一个三角形
然后给你一个A点和B点,你需要输出一个从A到B的路径,使得这条路径的最高点最低
题解:
首先,走点一定是可行的,所以我们就可以不用去考虑边。
在一个三角形内的话,就连一条边。
然后我们直接二分高度,然后每次CHECK A是否能到B 就好了
注意精度有毒。。。
代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
double x,y,z;
bool operator<(const node& p) const
{
if(z==p.z&&y==p.y)return x<p.x;
if(z==p.z)return y<p.y;
return z<p.z;
}
};
struct Tri
{
node p[3];
};
Tri tri[5006];
map<node,int> H;
map<int,node> T;
int tot = 1;
node A,B;
vector<int> E[7000];
int vis[7000];
int n;
void init()
{
memset(vis,0,sizeof(vis));
H.clear();
T.clear();
tot = 1;
for(int i=0;i<7000;i++)
E[i].clear();
memset(tri,0,sizeof(tri));
}
double eps = 1e-2;
double dis(node aa,node bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y)+(aa.z-bb.z)*(aa.z-bb.z));
}
double area(node aa,node bb,node cc)
{
double l1 = dis(aa,bb);
double l2 = dis(aa,cc);
double l3 = dis(bb,cc);
double pp = (l1+l2+l3)/2.0;
return sqrt(pp*(pp-l1)*(pp-l2)*(pp-l3));
}
int inRan(Tri kkk,node ttt)
{
double a1 = area(kkk.p[0],kkk.p[1],ttt);
double a2 = area(kkk.p[0],kkk.p[2],ttt);
double a3 = area(kkk.p[1],kkk.p[2],ttt);
double a4 = area(kkk.p[0],kkk.p[1],kkk.p[2]);
if(fabs(a4-a1-a2-a3)<=eps)return 1;
return 0;
}
void dfs(int x,int h)
{
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs(v,h);
}
}
int check(double h)
{
if(A.z>h||B.z>h)return 0;
memset(vis,0,sizeof(vis));
dfs(H[A],h);
if(vis[H[B]]==1)return 1;
return 0;
}
vector<node> TTT;
int flag = 0;
void dfs2(int x,double h)
{
if(flag)return;
TTT.push_back(T[x]);
if(x==H[B])
{
flag = 1;
cout<<TTT.size()<<endl;
for(int i=0;i<TTT.size();i++)
printf("%.0f %.0f %.0f\n",TTT[i].x,TTT[i].y,TTT[i].z);
return;
}
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs2(v,h);
TTT.pop_back();
}
}
int main()
{
freopen("hiking.in","r",stdin);
freopen("hiking.out","w",stdout);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<3;j++)
{
scanf("%lf%lf%lf",&tri[i].p[j].x,&tri[i].p[j].y,&tri[i].p[j].z);
if(H[tri[i].p[j]]==0)
{
T[tot] = tri[i].p[j];
H[tri[i].p[j]] = tot++;
}
}
for(int j=0;j<3;j++)
{
for(int k=j+1;k<3;k++)
{
E[H[tri[i].p[j]]].push_back(H[tri[i].p[k]]);
E[H[tri[i].p[k]]].push_back(H[tri[i].p[j]]);
}
}
}
scanf("%lf%lf%lf",&A.x,&A.y,&A.z);
scanf("%lf%lf%lf",&B.x,&B.y,&B.z);
if(H[A]==0)
{
T[tot] = A;
H[A] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],A))
{
for(int j=0;j<3;j++)
{
E[H[A]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[A]);
}
}
}
}
if(H[B]==0)
{
T[tot] = B;
H[B] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],B))
{
for(int j=0;j<3;j++)
{
E[H[B]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[B]);
}
}
}
}
double l = -2.0,r = 3000050.0;
for(int i=1;i<=100;i++)
{
double mid = (l+r)/2.0;
if(check(mid))r=mid;
else l=mid;
}
memset(vis,0,sizeof(vis));
TTT.clear();
dfs2(H[A],r+1);
}
Gym 100531H Problem H. Hiking in the Hills 二分的更多相关文章
- Codeforces Gym 100610 Problem H. Horrible Truth 瞎搞
Problem H. Horrible Truth Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1006 ...
- Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉
Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...
- codeforce gym/100495/problem/K—Wolf and sheep 两圆求相交面积 与 gym/100495/problem/E—Simple sequence思路简述
之前几乎没写过什么这种几何的计算题.在众多大佬的博客下终于记起来了当时的公式.嘚赶快补计算几何和概率论的坑了... 这题的要求,在对两圆相交的板子略做修改后,很容易实现.这里直接给出代码.重点的部分有 ...
- 2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem H. Password Service dp
Problem H. Password Service 题目连接: http://www.codeforces.com/gym/100253 Description Startups are here ...
- 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题
Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...
- 实验12:Problem H: 整型数组运算符重载
Home Web Board ProblemSet Standing Status Statistics Problem H: 整型数组运算符重载 Problem H: 整型数组运算符重载 Tim ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem H
Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...
- 清北学堂入学测试P4751 H’s problem(h)
P4751 H’s problem(h) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 小H是一个喜欢逛街的女孩子,但是由于上了大学 ...
- Problem H
Problem Description 穿过幽谷意味着离大魔王lemon已经无限接近了! 可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个 ...
随机推荐
- mybatis注解详解
首 先当然得下载mybatis-3.0.5.jar和mybatis-spring-1.0.1.jar两个JAR包,并放在WEB-INF的lib目录下 (如果你使用maven,则jar会根据你的pom配 ...
- Delphi 关闭MDI子窗口
需要在子窗口的onClose事件中吧Action = caFree; 就可以了. procedure Tfrm_aa.FormClose(Sender: TObject; var Action: TC ...
- hdu 5254 水题
纯暴力就能过的,可是题目描述真心不清楚,我看了好久好久才明白题目啥意思. 为了迅速打完,代码比较冗余. /* * Author : ben */ #include <cstdio> #in ...
- java解析properties文件
在自动化测试过程中,经常会有一些公用的属性要配置,以便后面给脚本使用,我们可以选择xml, excel或者json格式来存贮这些数据,但其实java本身就提供了properties类来处理proper ...
- Http相应代码及获取方法
1xx(临时响应)用于表示临时响应并需要请求者执行操作才能继续的状态代码. 代码 说明 100(继续) 请求者应当继续提出请求.服务器返回此代码则意味着,服务器已收到了请求的第一部分,现正在等待接收其 ...
- 从cocos2dx中寻找函数指针传递的方法
目的 看到群里有个朋友搞了好几天函数指针传递,没搞好.所以写一篇文章,旨在从cocos2dx中帮朋友们找到如何传递指针. 旧版本的函数指针传递 全局函数函数指针调用 一般在C++11之前,我们一般是这 ...
- gcc都做了什么优化
直接上程序: setjmp和longjmp是处理函数嵌套调用的,goto语句不能跨越函数,所以不选择goto. #include <setjmp.h> int setjmp(jmp_buf ...
- hadoop是什么?
在如今这个信息高速发展的今天,hadoop也越来越火了,那么到底是什么原因让hadoop如此的火,接下来新霸哥将详细的为了介绍,并让你快速的任何hadoop是什么? hadoop思想起源:Google ...
- LeetCode(1) -Two Sum
题目要求很简单,给你一个数组(例如,nums = [2,7,11,15])和一个target(target = 9),找到数组里两个数相加后能得到target的这两个数的index.在本例中,返回的应 ...
- [ZZ] C++ pair
Pair类型概述 pair是一种模板类型,其中包含两个数据值,两个数据的类型可以不同,基本的定义如下: pair<int, string> a; 表示a中有两个类型,第一个元素是int型的 ...