Problem H. Hiking in the Hills

题目连接:

http://codeforces.com/gym/100531/attachments

Description

Helen is hiking with her friends in a highland. Their plan is to hike from their camp A to a beautiful

showplace B.

Unfortunately, Helen started feeling dizzy due to altitude sickness. Help her group find a route such that

the topmost height on that route is as small as possible.

Input

The input file contains full information about the landscape of a square region 106 × 106

in the following

format. The first line contains integer n — the number of triangles in the landscape (2 ≤ n ≤ 2000).

Each of following n lines contains nine integers xi1, yi1, zi1, xi2, yi2, zi2, xi3, yi3, zi3 — coordinates of a

triangle. All coordinates belong to the closed interval [0, 106

]. The two last lines contain three integers

each: xA, yA, zA and xB, yB, zB — coordinates of the camp A and the showplace B.

The given triangles are guaranteed to describe a consistent continuous landscape. Projections of triangles

onto XY plane are non-degenerate and fill the square without overlapping. A vertex of one triangle never

lays inside an edge of another triangle. Points A and B belong to the landscape surface and are different.

Output

Output a polyline route from A to B with the smallest possible topmost height. The first line should

contain m, the number of vertices in this polyline. Each of following m lines should contain three integer

coordinates of a polyline vertex: xi

, yi

, and zi

. Vertices must be listed along the polyline, from A to B

(including these two endpoints).

All coordinates of polyline vertices should be integer. Each polyline edge must belong to some triangle

from the input file (possibly, to its edge). The number of vertices in the polyline must not exceed 5n.

Sample Input

8

1000000 0 0 1000000 1000000 150000 600000 600000 400000

0 1000000 0 600000 600000 400000 600000 1000000 300000

0 1000000 0 400000 300000 150000 600000 600000 400000

400000 0 200000 1000000 0 0 400000 300000 150000

400000 300000 150000 1000000 0 0 600000 600000 400000

600000 600000 400000 1000000 1000000 150000 600000 1000000 300000

0 0 0 400000 0 200000 400000 300000 150000

0 1000000 0 0 0 0 400000 300000 150000

100000 700000 37500

900000 400000 137500

Sample Output

4

100000 700000 37500

400000 300000 150000

900000 150000 100000

900000 400000 137500

Hint

题意

给你一个多面体,每个平面都是一个三角形

然后给你一个A点和B点,你需要输出一个从A到B的路径,使得这条路径的最高点最低

题解:

首先,走点一定是可行的,所以我们就可以不用去考虑边。

在一个三角形内的话,就连一条边。

然后我们直接二分高度,然后每次CHECK A是否能到B 就好了

注意精度有毒。。。

代码

#include<bits/stdc++.h>
using namespace std; struct node
{
double x,y,z;
bool operator<(const node& p) const
{
if(z==p.z&&y==p.y)return x<p.x;
if(z==p.z)return y<p.y;
return z<p.z;
}
};
struct Tri
{
node p[3];
};
Tri tri[5006];
map<node,int> H;
map<int,node> T;
int tot = 1;
node A,B;
vector<int> E[7000];
int vis[7000];
int n;
void init()
{
memset(vis,0,sizeof(vis));
H.clear();
T.clear();
tot = 1;
for(int i=0;i<7000;i++)
E[i].clear();
memset(tri,0,sizeof(tri));
}
double eps = 1e-2;
double dis(node aa,node bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y)+(aa.z-bb.z)*(aa.z-bb.z));
}
double area(node aa,node bb,node cc)
{
double l1 = dis(aa,bb);
double l2 = dis(aa,cc);
double l3 = dis(bb,cc);
double pp = (l1+l2+l3)/2.0;
return sqrt(pp*(pp-l1)*(pp-l2)*(pp-l3));
}
int inRan(Tri kkk,node ttt)
{
double a1 = area(kkk.p[0],kkk.p[1],ttt);
double a2 = area(kkk.p[0],kkk.p[2],ttt);
double a3 = area(kkk.p[1],kkk.p[2],ttt);
double a4 = area(kkk.p[0],kkk.p[1],kkk.p[2]);
if(fabs(a4-a1-a2-a3)<=eps)return 1;
return 0;
}
void dfs(int x,int h)
{
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs(v,h);
}
}
int check(double h)
{
if(A.z>h||B.z>h)return 0;
memset(vis,0,sizeof(vis));
dfs(H[A],h);
if(vis[H[B]]==1)return 1;
return 0;
}
vector<node> TTT;
int flag = 0;
void dfs2(int x,double h)
{
if(flag)return;
TTT.push_back(T[x]);
if(x==H[B])
{
flag = 1;
cout<<TTT.size()<<endl;
for(int i=0;i<TTT.size();i++)
printf("%.0f %.0f %.0f\n",TTT[i].x,TTT[i].y,TTT[i].z);
return;
}
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs2(v,h);
TTT.pop_back();
}
}
int main()
{
freopen("hiking.in","r",stdin);
freopen("hiking.out","w",stdout);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<3;j++)
{
scanf("%lf%lf%lf",&tri[i].p[j].x,&tri[i].p[j].y,&tri[i].p[j].z);
if(H[tri[i].p[j]]==0)
{
T[tot] = tri[i].p[j];
H[tri[i].p[j]] = tot++;
}
}
for(int j=0;j<3;j++)
{
for(int k=j+1;k<3;k++)
{
E[H[tri[i].p[j]]].push_back(H[tri[i].p[k]]);
E[H[tri[i].p[k]]].push_back(H[tri[i].p[j]]);
}
}
}
scanf("%lf%lf%lf",&A.x,&A.y,&A.z);
scanf("%lf%lf%lf",&B.x,&B.y,&B.z);
if(H[A]==0)
{
T[tot] = A;
H[A] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],A))
{
for(int j=0;j<3;j++)
{
E[H[A]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[A]);
}
}
}
}
if(H[B]==0)
{
T[tot] = B;
H[B] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],B))
{
for(int j=0;j<3;j++)
{
E[H[B]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[B]);
}
}
}
}
double l = -2.0,r = 3000050.0;
for(int i=1;i<=100;i++)
{
double mid = (l+r)/2.0;
if(check(mid))r=mid;
else l=mid;
}
memset(vis,0,sizeof(vis));
TTT.clear();
dfs2(H[A],r+1);
}

Gym 100531H Problem H. Hiking in the Hills 二分的更多相关文章

  1. Codeforces Gym 100610 Problem H. Horrible Truth 瞎搞

    Problem H. Horrible Truth Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1006 ...

  2. Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉

    Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...

  3. codeforce gym/100495/problem/K—Wolf and sheep 两圆求相交面积 与 gym/100495/problem/E—Simple sequence思路简述

    之前几乎没写过什么这种几何的计算题.在众多大佬的博客下终于记起来了当时的公式.嘚赶快补计算几何和概率论的坑了... 这题的要求,在对两圆相交的板子略做修改后,很容易实现.这里直接给出代码.重点的部分有 ...

  4. 2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem H. Password Service dp

    Problem H. Password Service 题目连接: http://www.codeforces.com/gym/100253 Description Startups are here ...

  5. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题

    Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...

  6. 实验12:Problem H: 整型数组运算符重载

    Home Web Board ProblemSet Standing Status Statistics   Problem H: 整型数组运算符重载 Problem H: 整型数组运算符重载 Tim ...

  7. The Ninth Hunan Collegiate Programming Contest (2013) Problem H

    Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...

  8. 清北学堂入学测试P4751 H’s problem(h)

    P4751 H’s problem(h)  时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 小H是一个喜欢逛街的女孩子,但是由于上了大学 ...

  9. Problem H

    Problem Description 穿过幽谷意味着离大魔王lemon已经无限接近了! 可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个 ...

随机推荐

  1. Yii 实现MySQL多库和读写分离

    前段时间为SNS产品做了架构设计,在程序框架方面做了不少相关的压力测试,最终选定了YiiFramework,至于为什么没选用公司内部的PHP框架,其实理由很充分,公司的框架虽然是“前辈”们辛苦的积累, ...

  2. Ubuntu 升级到13.10之后出现Apache2启动失败的问题

    昨天看到Ubuntu 13.04提示有新的发行版Ubuntu 13.10了,手痒了一下,没有忍住就升级了. 结果升级完毕之后发现Apache2服务启动失败了,失败信息是: Invalid comman ...

  3. Oracle Database 11g Express Edition 使用小结(windows)

    如何启动oraclewindows系统服务中有一个服务叫:[OracleService[SID]]SID是你安装oracle xe时候的实例名,如果你没有改默认的是[XE], OracleServic ...

  4. CAT XQX --- 省市三级级联实现说明

    最终效果: 满足要求, 上代码 : 1.   需要调用这个控件 的地方:添加引用,因为里面写着逻辑呢..... <script type="text/javascript" ...

  5. effective c++:对象的赋值运算

    operator 中处理”自我赋值“ operator=操作符缺省情况下返回引用——TYPE& TYPE::operator=(const TYPE&),原因很简单,operator= ...

  6. 使用arm开发板搭建无线mesh网络(二)

    上篇博文介绍了无线mesh网络和adhoc网络的区别,这篇文章将介绍无线mesh网络的骨干网节点的组建过程.首先需要介绍下骨干网节点的设计方案:每个骨干网节点都是由一块友善之臂的tiny6410 ar ...

  7. 正整数N是否是素数

    来自:[数据结构与算法分析——C语言描述]练习2.13 问题描述: a. 编写一个程序来确定正整数N是否是素数. b. 你的程序在最坏的情形下的运行时间是多少(用N表示)? c. 令B等于N的二进制表 ...

  8. Django 的 CSRF 保护机制(转)

    add by zhj:假设用户登录了网站A,而在网站B中有一个CSRF攻击标签,点击这个标签就会访问网站A,如果前端数据(包括sessionid)都放在本地存储的话, 当在网站B点击CSRF攻击标签时 ...

  9. Fedora 16设置开机自启动程序与Ubuntu的区别

    Ubuntu设置开机自启动脚本的方法是:修改/etc/init.d/rc.local这个文件,添加需要启动的程序即可,相关函数如下: void SetSysAutoBoot() { ] = {}; ; ...

  10. HDu 1001 Sum Problem 分类: ACM 2015-06-19 23:38 12人阅读 评论(0) 收藏

    Sum Problem Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...