今天一个案子,用户反映数量差异明明是 2.0-1.8,显示的结果却为0.20000005,就自己写了段方法测试了一下:
package test1;
public class Test2 {
/**
* @param args
*/
public static void main(String[] args) {
Float xx = 2.0f;
Float yy = 1.8f;
Float tt = xx - yy;
System.out.println("tttttt-----" + tt);
}
}
果然输出结果是: tttttt-----0.20000005

再测试了几个float类型的减法,除了*.0这样的相减没有异议之外,都存在这个问题,就是说float在相减的时候精度丢失了。后来在网上找到一段解决这个问题的办法,记在这里:
package test1;
import java.math.BigDecimal;
public class Test2 {
/**
* @param args
*/
public static void main(String[] args) {
Float xx = 2.2f;
Float yy = 2.0f;
Float tt = xx - yy;

BigDecimal b1 = new BigDecimal(Float.toString(xx));
BigDecimal b2 = new BigDecimal(Float.toString(yy));
float ss = b1.subtract(b2).floatValue();
System.out.println("ssss----" + ss);
System.out.println("tttttt-----" + tt);
}
}
输出为:
ssss----0.2
tttttt-----0.20000005

这样一对比,差异就很明显了。

解决了问题,再找了一下为什么会产生这种差异:

问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么?
现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?
1、小数的二进制表示问题
首先我们要搞清楚下面两个问题:
(1) 十进制整数如何转化为二进制数
算法很简单。举个例子,11表示成二进制数:
11/2=5 余 1
5/2=2 余 1
2/2=1 余 0
1/2=0 余 1
0结束 11二进制表示为(从下往上):1011

这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。
(2) 十进制小数如何转化为二进制数
算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数
0.9*2=1.8 取整数部分 1
0.8(1.8的小数部分)*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 1
0.2*2=0.4 取整数部分 0
0.4*2=0.8 取整数部分 0
0.8*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 0
......... 0.9二进制表示为(从上往下): 1100100100100......

注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

2、 float型在内存中的存储
众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下
float内存存储结构
4bytes 31 30 29----23 22----0
表示 实数符号位 指数符号位 指数位 有效数位
其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。

将一个float型转化为内存存储格式的步骤为:
(1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
(2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
(3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
(4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
(5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
(6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

举例说明: 11.9的内存存储格式
(1) 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。
(2) 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110 "。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。
(3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“ 011 11100110011001100110 ”共23bit。将它放入float存储结构的第22到第0位。
(4) 因为11.9是正数,因此在第31位实数符号位放入“0”。
(5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。
(6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。
最后表示11.9为: 0 1 0000010 011 11100110011001100110
再举一个例子:0.2356的内存存储格式
(1)将0.2356化为二进制后大约是0.00111100010100000100100000。
(2)将小数点右移三位得到1.11100010100000100100000。
(3)从小数点右边数出二十三位有效数字,即11100010100000100100000放入第22到第0位。
(4)由于0.2356是正的,所以在第31位放入“0”。
(5)由于我们把小数点右移了,所以在第30位放入“0”。
(6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。

最后表示0.2356为:0 0 1111100 11100010100000100100000
将一个内存存储的float二进制格式转化为十进制的步骤:
(1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
(2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
(3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
(4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

3、浮点型的减法运算
浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
  (1) 0操作数的检查;
如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。
   (2) 比较阶码(指数位)大小并完成对阶;
两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。
如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):

通过尾数的移位以改变 Ex 或 Ey ,使之相等。 由于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。
   (3) 尾数(有效数位)进行加或减运算; 对阶完毕后就可 有效数位 求和。 不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
   (4) 结果规格化并进行舍入处理。

4、 计算12.0f-11.9f
12.0f 的内存存储格式为: 0 1 0000010 10000000000000000000000
11.9f 的内存存储格式为: 0 1 0000010 011 11100110011001100110

可见两数的指数位完全相同,只要对有效数位进行减法即可。
12.0f-11.9f 结果: 0 1 0000010 00000011001100110011010

将结果还原为十进制为: 0.000 11001100110011010= 0.10000038

//------------------------------------------------------------------------一个此类问题的例子----------------------------------------------------------------------------
在精确计算,尤其是有关金钱的商业运算中,不能使用float和double类型。
看如下的例子:
商店里某种糖果的价格是0.1元,0.2元,0.3元, …… 依此类推,一直到1.00元。现在你手中有1元钱。你想买一些糖果,假设你从1角的糖果开始依次买,一种价格的买一颗。计算一下一共可以买多少颗糖果,最后会剩下多少零钱。

第一个程序:
package com.mytest;

public class Test {
private static final double FUNDS = 1.00;
private static final double TEN_CENTS = .1;

public static void main( String[] args ) {
int itemsBought = 0;
double myfund = FUNDS;
for (double price = TEN_CENTS; price < myfund; price+= TEN_CENTS) {
itemsBought++;
myfund-= price;
}

System.out.println("itemsBought: " + itemsBought);
System.out.println("myfund left: " + myfund);
}
}

在这里,使用double类型,进行计算,但是却得到如下结果:
itemsBought: 3
myfund left: 0.3999999999999999

这并不是正确的结果。在涉及金钱的运算中,应该使用BigDecimal。
正确的程序如下:
package com.mytest;
import java.math.BigDecimal;
public class Test {
private static final BigDecimal FUNDS = new BigDecimal("1.00");
private static final BigDecimal TEN_CENTS = new BigDecimal(".10");

public static void main( String[] args ) {
int itemsBought = 0;
BigDecimal myfund = FUNDS;
for (BigDecimal price = TEN_CENTS; price.compareTo(myfund) <= 0; price = price.add(TEN_CENTS)) {
itemsBought++;
myfund = myfund.subtract(price);
}

System.out.println("itemsBought: " + itemsBought);
System.out.println("change: " + myfund);
}
}

打印结果:
itemsBought: 4
change: 0.00
这才是正确的答案

float类型进行计算精度丢失的问题的更多相关文章

  1. Java Float类型 减法运算时精度丢失问题

    package test1; public class Test2 { /*** @param args*/public static void main(String[] args) {   Flo ...

  2. c# float类型和double类型相乘出现精度丢失

    c# float类型和double类型相乘出现精度丢失 double db = 4.0; double db2 = 1.3; float f = 1.3F; float f2 = 4.0F; Deci ...

  3. java用double和float进行小数计算精度不准确

    java用double和float进行小数计算精度不准确 大多数情况下,使用double和float计算的结果是准确的,但是在一些精度要求很高的系统中或者已知的小数计算得到的结果会不准确,这种问题是非 ...

  4. [ JAVA编程 ] double类型计算精度丢失问题及解决方法

    前言 如果你在测试金融相关产品,请务必覆盖交易金额为小数的场景.特别是使用Java语言的初级开发. Java基本实例 先来看Java中double类型数值加.减.乘.除计算式实例: public cl ...

  5. 关于JavaScript中计算精度丢失的问题

    摘要: 由于计算机是用二进制来存储和处理数字,不能精确表示浮点数,而JavaScript中没有相应的封装类来处理浮点数运算,直接计算会导致运算精度丢失. 为了避免产生精度差异,把需要计算的数字升级(乘 ...

  6. JavaScript中解决计算精度丢失的问题

    在做项目之前老师就给我们封装好了一个js文件,解决计算中丢失精度的一些函数,直接引用js文件就可以使用. eg: var numA = 0.1; var numB = 0.2; alert( numA ...

  7. Java中的float、double计算精度问题

    java中的float.double计算存在精度问题,这不仅仅在java会出现,在其他语言中也会存在,其原因是出在IEEE 754标准上. 而java对此提供了一个用于浮点型计算的类——BigDeci ...

  8. JavaScript数字计算精度丢失的问题和解决方案

    一.JS数字精度丢失的一些典型问题 1. 两个简单的浮点数相加:0.1 + 0.2 != 0.3 // true,下图是firebug的控制台截图: 看看java的计算结果:是不是让你很不能接受 再来 ...

  9. Long类型数据前端精度丢失

    问题描述 后端把Long类型的数据传给前端,前端可能会出现精度丢失的情况.例如:201511200001725439这样一个Long类型的整数,传给前端后会变成201511200001725440 相 ...

随机推荐

  1. 强大的JQuery(二)--动画效果

    上篇博客我们讲过了jquery的基础知识--强大的JQuery(一)--基础篇,作为web开发人员,网页的动画效果是不可缺少的,本篇博客重点来说说jquery的动画效果的实现. 因为动画的效果不能截图 ...

  2. Part 34 to 35 Talking about multiple class inheritance in C#

    Part 34 Problems of multiple class inheritance Part 35 Multiple class inheritance using interfaces

  3. Android之adb命令

    1.安装APK(如果加 -r 参数,保留已设定数据,重新安装filename.apk) adb install xxx.apk adb install -r xxx.apk 2.卸载APK(如果加 - ...

  4. shell 脚本执行,出现错误bad interpreter: No such file or directory

    出现bad interpreter:No such file or directory的原因是文件格式的问题.这个文件是在Windows下编写的.换行的方式与Unix不一样,但是在VI下面如果不Set ...

  5. 【Linux C中文函数手册】文件内容控制函数

    文件内容控制函数 1)clearerr 清除文件流的错误旗标 相关函数 feof表头文件 #include<stdio.h>定义函数 void clearerr(FILE * stream ...

  6. 【学习笔记】【C语言】三目运算符

    1.N目运算符 像逻辑非(!).负号(-)这种只连接一个数据的符号,称为“单目运算符”,比如!5.-5.像算术运算符.关系运算符.逻辑运算符这种连接二个数据的负号,称为“双目运算符”,比如6+7.8* ...

  7. UI3_UITableView

    // // AppDelegate.m // UI3_UITableView // // Created by zhangxueming on 15/7/13. // Copyright (c) 20 ...

  8. 4月13日学习笔记——jQuery动画

    基本动画函数 $("#divPop").show(); $("#divPop").hide(); $("#divPop").toggle() ...

  9. 13款精彩实用的最新jQuery插件

    1.jQuery特色菜单 圆形动画菜单插件 jQuery是一个非常流行的WEB前端框架,尽管HTML5非常酷,但是如果HTML5结合jQuery的话就能实现更酷更实用的插件.今天分享的这款jQuery ...

  10. The breakpoint will not currently be hit. No symbols have been loaded for this document."

    C# exe calls function from a native C++ DLL, and breakpoints set inside C++ source code cannot be hi ...