Theano教程
让我们开始一个交互式会话(例如使用python或ipython)并导入Theano。
from theano import *
你需要使用Theano的tensor子包中的几个符号。让我们以一个方便的名字,例如T导入这个子包(教程将经常使用这个约定)。
import theano.tensor as T
Numpy
机器学习的矩阵惯例
行是水平的,列是垂直的。每一行都是一个样本。因此,inputs[10,5]是10个样本的矩阵,其中每个样本具有维度5。如果这是神经网络的输入,则从输入到第一个隐藏层的权重将表示大小(5, #hid)的矩阵。
import numpy as np
a=np.asarray([[1,2],[3,4],[5,6]])
print a
print a.shape [[1 2]
[3 4]
[5 6]] (3, 2)
这是3×2矩阵,即有3行和2列。
要访问第3行(#2行)和第1列(#0列)中的元素:
print a[2,0]
记住这一点,我们从左到右、从上到下读取,所以连续的元素是一行。也就是说,有3行和2列。
Broadcasting
Numpy在算术运算期间对不同形状的数组进行broadcasting。这通常意味着较小的数组(或标量)被broadcasted到较大的数组,以让它们具有兼容的形状。下面的示例演示broadcastaing的一个实例:
a=np.asarray([1,2,3])
b=3
print a*b [3 6 9]
在这种情况下,这里较小的数组b(实际上是标量,其工作原理类似于一个0维数组)在乘法过程中被broadcasted到与a相同的大小。这个技巧通常用于简化表达式的写法。
代数
两个标量相加
为了让我们开始使用Theano并获得我们正在使用的感觉,让我们做一个简单的函数:将两个数字加在一起。这里是你怎么做:
import theano.tensor as T
from theano import function
x=T.dscalar('x')
y=T.dscalar('y')
z=x+y
f=function([x,y],z)
现在我们已经创建了我们的函数,我们可以使用它:
f=function([x,y],z)
print f(2,3) 5.0
让我们分成几个步骤。第一步是定义两个符号(变量),表示要相加的数量。注意,从现在起,我们将使用术语变量来表示“符号”(换句话说,x、y、z都是变量对象)。函数f的输出是零维度的numpy.ndarray。
如果你正在跟着输入解释器,你可能已经注意到执行function指令有一点点延迟。在幕后,f正在被编译成C代码。
步骤1
x=T.dscalar('x')
y=T.dscalar('y')
在Theano中,所有的符号必须具有类型。特别地,T.dscalar是我们分配给“0维数组(双精度浮点数(d)的标量)”的类型。它是Theano的Type类型。
dscalar不是类。因此,x或y都不是dscalar的实例。它们是TensorVariable的实例。然而,x和y的type字段赋值为theano的dscalar类型,正如你在下面看到的:
print type(x)
print x.type
print T.dscalar
print x.type is T.dscalar <class 'theano.tensor.var.TensorVariable'>
TensorType(float64, scalar)
TensorType(float64, scalar)
True
通过使用字符串参数调用T.dscalar,你将创建一个给定名称的变量,表示一个浮点数标量。如果你不提供参数,符号将不会命名。名称不是必需的,但它们可以帮助调试。
步骤2
第二步是将x和y组合到它们的和z中:
z=x*y
z是另一个变量,表示x和y相加。你可以使用pp函数精确打印与z相关的计算。
from theano import pp
print pp(z) (x+y)
步骤3
最后一步是创建一个以x和y作为输入并将z作为输出的函数:
f=function([x,y],z)
function的第一个参数是一个变量列表,它们将作为函数的输入。第二个参数是单个变量或一个变量的列表。不管哪一种情况,第二个参数是当我们应用函数时我们想要看到它的输出。f可以像普通的Python函数一样使用。
注意
作为一个捷径,你可以跳过第3步,只需使用变量的eval方法。eval()方法不像function()一样灵活,但它可以完成我们在本教程中介绍的所有内容。它有额外的好处,不需要你导入function()。下面是eval()的工作原理:
x=T.dscalar('x')
y=T.dscalar('y')
z=x+y
print z.eval({x:1,y:2})
3.0
我们传递给eval()一个字典,将theano的符号变量映射到值来替换它们,然后它返回表达式的数值。
eval()在第一次调用变量时会变慢 - 需要调用function()来编译后台表达式。在同一变量上对eval()的后续调用将很快,因为变量缓存编译的函数。
两个矩阵相加
x=T.dmatrix('x')
y=T.dmatrix('y')
z=x+y
f=function([x,y],z)
dmatrix是双精度(double)矩阵的类型。然后我们可以在二维数组上使用我们的新函数:
f=function([x,y],z)
print f([[1,1],[1,1]],[[1,2],[3,4]]) [[ 2. 3.]
[ 4. 5.]]
变量是NumPy数组。我们也可以直接使用NumPy数组作为输入:
print f(np.asarray([[1,1],[1,1]]),np.asarray([[1,2],[3,4]]))
[[ 2. 3.]
[ 4. 5.]]
可以标量与矩阵相加,向量与矩阵相加,标量与向量相加等。这些操作的行为由broadcasting定义。
以下类型可以使用:
- byte:
bscalar, bvector, bmatrix, brow, bcol, btensor3, btensor4, btensor5 - 16-bit integers:
wscalar, wvector, wmatrix, wrow, wcol, wtensor3, wtensor4, wtensor5 - 32-bit integers:
iscalar, ivector, imatrix, irow, icol, itensor3, itensor4, itensor5 - 64-bit integers:
lscalar, lvector, lmatrix, lrow, lcol, ltensor3, ltensor4, ltensor5 - float:
fscalar, fvector, fmatrix, frow, fcol, ftensor3, ftensor4, ftensor5 - double:
dscalar, dvector, dmatrix, drow, dcol, dtensor3, dtensor4, dtensor5 - complex:
cscalar, cvector, cmatrix, crow, ccol, ctensor3, ctensor4, ctensor5
Theano教程的更多相关文章
- Theano教程:Python的内存管理
在写大型程序时候的一大挑战是如何保证最少的内存使用率.但是在Python中的内存管理是比较简单的.Python显示分配内存,使用引用计数系统管理对象,当指向某一个对象的引用数变为 0 的时候,该对象所 ...
- 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...
- video2gift环境安装(Theano等)
pip install Theano http://deeplearning.net/software/theano/install_centos6.html pip install moviepy ...
- theano 模块 MLP示例
theano 模块 MLP示例,有需要的朋友可以参考下. theano教程Example: MLP: 约定数组为列向量, 层级:将多层传感器定义为一连串的层级,每个层级定义为一个类.类属性包括:权重. ...
- DeepLearning之路(三)MLP
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/articl ...
- TensorFlow资源整理
什么是TensorFlow? TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示 ...
- tensorflow实现基于LSTM的文本分类方法
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...
- 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...
- [转]CNN目标检测(一):Faster RCNN详解
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...
随机推荐
- django-URL实例命名空间(十一)
每生成一个地址,都是一个实例.使用实例命名空间,针对于一个app而言. book/views.py from django.http import HttpResponse from django.s ...
- Microsoft.Extensions.DependencyInjection 之三:反射可以一战(附源代码)
目录 前文回顾 IServiceCallSite CallSiteFactory ServiceProviderEngine CompiledServiceProviderEngine Dynamic ...
- php从数据库获取数据并遍历在表格中
<?php /*连接数据库并以一个数组的形式获得数据*/ header("Content-type:text/html;charset=UTF-8"); $con = mys ...
- 第二十五章 system v消息队列(一)
IPC对象的持续性 随进程持续 :一直存在直到打开的最后一个进程结束.(如pipe和FIFO) 随内核持续 :一直存在直到内核自举(内核自举就是把主引导记录加载到内存,并跳转执行这段内存)或显示删除( ...
- QHDYZ模拟赛20191027 提前透题
你们想的美 我给你们透一下题目名称 别刷博客了快去做题
- Hive数据仓库你了解了吗
在工作中我们经常使用的数据库,数据库一般存放的我们系统中常用的数据,一般为百万级别.如果数据量庞大,达到千万级.亿级又需要对他们进行关联运算,该怎么办呢? 前面我们已经介绍了HDFS和MapReduc ...
- 从0开始编写webpack插件
1. 前言 插件(plugins)是webpack中的一等功臣.正是由于有了诸多插件的存在,才使得webpack无所不能.在webpack源码中也是使用了大量的内部插件,插件要是用的好,可以让你的工作 ...
- 简单看看@RequestBody注解原理
又到了很无聊的时候了,于是随便看看源码假装自己很努力的样子,哈哈哈: 记得上一篇博客随便说了一下RequestBody的用法以及注意的问题,这个注解作为非常常用的注解,也是时候了解一波其中的原理了. ...
- 全栈项目|小书架|服务器开发-JWT 详解
JWT 官方简介:Introduction to JSON Web Tokens 文章基本是官网内容的翻译,英文不错的同学可点击上面的链接直接看英文文档. 什么是 JWT JWT全称是JSON Web ...
- Hadoop压缩的图文教程
近期由于Hadoop集群机器硬盘资源紧张,有需求让把 Hadoop 集群上的历史数据进行下压缩,开始从网上查找的都是关于各种压缩机制的对比,很少有关于怎么压缩的教程(我没找到..),再此特记录下本次压 ...