LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)
什么神仙思路啊……
看到棋盘就去想二分图。(smg啊)(其实是校内模拟赛有基本一样的题,只不过直接给了个二分图)
看到二分图就去想最大匹配。(我怎么想偶环的性质去了)
(以下内容摘自这里)
这个二分图的某种最大匹配方案中,从非匹配点出发先手必败:先手只能走到匹配点(否则不是最大匹配),后手只需要一直走匹配边即可,先手操作时不可能走到非匹配点(否则存在增广路,与最大匹配矛盾),所以先手必败。
容易发现,当且仅当出发点一定在最大匹配中,先手才会胜利。
(注:这里我觉得有点问题,虽然我大概能感受到究竟为什么是对的,但我说不出,所以咕了)
所以,一个起点使先手必胜当且仅当它一定在最大匹配中。
判断的话,先求出任意一个最大匹配。然后对有匹配的点,如果与他有匹配的点能找到另一个匹配,那么它实际上不合法,否则合法。
用匈牙利算法即可做到 \(O((nm)^2)\)。实际上常数小,跑不满,跑得飞快。
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010,mod=998244353,d[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,m,el,cnt,head[maxn],to[maxn],nxt[maxn],dis[maxn],with[maxn],x[maxn],y[maxn],id[111][111],tot;
char mp[111][111];
bool vis[maxn],ans[maxn];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;
}
void dfs(int u){
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(~dis[v]) continue;
dis[v]=dis[u]^1;
dfs(v);
}
}
bool dfs2(int u){
if(vis[u]) return false;
vis[u]=true;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(!with[v] || dfs2(with[v])){
with[with[u]]=0;
with[u]=v;with[v]=u;
return true;
}
}
return false;
}
int main(){
n=read();m=read();
FOR(i,1,n) scanf("%s",mp[i]+1);
FOR(i,1,n) FOR(j,1,m) if(mp[i][j]=='.') id[i][j]=++cnt,x[cnt]=i,y[cnt]=j;
FOR(i,1,n) FOR(j,1,m) if(mp[i][j]=='.'){
FOR(k,0,3){
int ti=i+d[k][0],tj=j+d[k][1];
if(ti<1 || ti>n || tj<1 || tj>m || mp[ti][tj]=='#') continue;
add(id[i][j],id[ti][tj]);
}
}
MEM(dis,-1);
FOR(i,1,cnt) if(dis[i]==-1) dis[i]=0,dfs(i);
FOR(i,1,cnt) if(dis[i]){
MEM(vis,0);
dfs2(i);
}
FOR(i,1,cnt) if(with[i]){
MEM(vis,0);
ans[i]=!dfs2(with[i]);
}
FOR(i,1,cnt) if(!ans[i]) tot++;
printf("%d\n",tot);
FOR(i,1,cnt) if(!ans[i]) printf("%d %d\n",x[i],y[i]);
}
LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)的更多相关文章
- loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)
题意 链接 Sol 第一次做在二分图上博弈的题..感觉思路真是清奇.. 首先将图黑白染色. 对于某个点,若它一定在最大匹配上,那么Bob必胜.因为Bob可以一直沿着匹配边都,Alice只能走非匹配边. ...
- [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]
题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...
- 「雅礼集训 2017 Day2」棋盘游戏
祝各位圣诞后快乐(逃) 题目传送门 分析: 首先棋盘上的路径构成的图是一张二分图 那么对于一个二分图,先求出最大匹配,先手如果走到关键匹配点,只要后手顺着匹配边走,由于不再会出现增广路径,所以走到最后 ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- #6034. 「雅礼集训 2017 Day2」线段游戏 李超树
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统 ...
- 【loj6034】「雅礼集训 2017 Day2」线段游戏
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:Special Judge 上传者: 匿名 题目描述 ...
- loj#6032. 「雅礼集训 2017 Day2」水箱(并查集 贪心 扫描线)
题意 链接 Sol 神仙题+神仙做法%%%%%%%% 我再来复述一遍.. 首先按照\(y\)坐标排序,然后维护一个扫描线从低处往高处考虑. 一个连通块的内状态使用两个变量即可维护\(ans\)表示联通 ...
- LOJ#6032. 「雅礼集训 2017 Day2」水箱
传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...
- 「雅礼集训 2017 Day2」水箱
题目链接 题意分析 我们用\(f[i][j]\)表示当前到达第\(i\)个位置水位高度为\(j\)的答案 如果那么\(h[i]\)为\(i\)和\(i+1\)之间的支柱高度 那么如果\(j≤h[i]\ ...
随机推荐
- 如何抓取 framework input 事件相关 log
出现事件输入相关的问题时, 建议先 followhttp://429564140.iteye.com/blog/2355405来检测对应的设备是否有响应输入 如果没有响应输入,则可能是 driver ...
- Android五大布局详解——GridLayout(网格布局)
GridLayout 本章以一个小的实现示例讲述: 实现效果如图: 代码实现: <?xml version="1.0" encoding="utf-8"? ...
- 百度大脑UNIT3.0详解之语音语义一体化方案
在电话客服场景里,用户和机器人交流的过程中,经常会出现沉默.打断机器人.噪声等情况,机器人在应对这些异常情况的时候,需要语音和语义理解技术进行处理,才能实现用户和机器人的流畅交谈.而这些能力的获取与应 ...
- C语言入门-枚举
常量符号化 用符号而不是具体的数字来表示程序中的数字 一. 枚举 用枚举而不是定义独立的const int变量 枚举是一种用户定义的数据类型,它用关键字enum如以下语句来声明 enum 枚举类型名字 ...
- Markdown语法教程
标题 # 一级标题 ## 二级标题 ### 三级标题 #### 四级标题 ##### 五级标题 ###### 六级标题 效果如下: 一级标题 二级标题 三级标题 四级标题 五级标题 六级标题 段落 换 ...
- Flink概述| 配置
流处理技术的演变 在开源世界里,Apache Storm项目是流处理的先锋.Storm提供了低延迟的流处理,但是它为实时性付出了一些代价:很难实现高吞吐,并且其正确性没能达到通常所需的水平,换句话说, ...
- FIRST 集与 FOLLOW 集
文法: S→ABc A→a|ε B→b|ε First 集合求法: 能 由非终结符号推出的所有的开头符号或可能的ε,但要求这个开头符号是终结符号.如此题 A 可以推导出 a 和ε,所以 FIRST(A ...
- Tomcat9+JDK 13报错Neither the JAVA_HOME nor the JRE_HOME environment variable is defined At least one of these environment variable is needed to run this program
Tomcat使用的是https://tomcat.apache.org/download-90.cgi Tomcat9 之前安装的JDK 13,有JAVA_HOME环境变量地址(C:\Program ...
- node 升级版本
1.安装 更新node.js版本 命令 [root@node ~]# npm install -g n /home/meisapp/node/node-v6.10.0-linux-x64/bin/n ...
- ETCD:文档
原文地址:Documentation 文档 etcd是一个分布式键值对存储,被设计为可靠的,快速的保存并提供对关键数据的访问.通过分布式锁,领导选举和写屏障使能分布式一致性.一个etcd集群旨在实现高 ...