pytorch中的pack_padded_sequence和pad_packed_sequence用法
pack_padded_sequence是将句子按照batch优先的原则记录每个句子的词,变化为不定长tensor,方便计算损失函数。
pad_packed_sequence是将pack_padded_sequence生成的结构转化为原先的结构,定长的tensor。
其中test.txt的内容
As they sat in a nice coffee shop,
he was too nervous to say anything and she felt uncomfortable.
Suddenly, he asked the waiter,
"Could you please give me some salt? I'd like to put it in my coffee."
具体参见如下代码
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import wordfreq vocab = {}
token_id = 1
lengths = [] #读取文件,生成词典
with open('test.txt', 'r') as f:
lines=f.readlines()
for line in lines:
tokens = wordfreq.tokenize(line.strip(), 'en')
lengths.append(len(tokens))
#将每个词加入到vocab中,并同时保存对应的index
for word in tokens:
if word not in vocab:
vocab[word] = token_id
token_id += 1 x = np.zeros((len(lengths), max(lengths)))
l_no = 0
#将词转化为数字
with open('test.txt', 'r') as f:
lines = f.readlines()
for line in lines:
tokens = wordfreq.tokenize(line.strip(), 'en')
for i in range(len(tokens)):
x[l_no, i] = vocab[tokens[i]]
l_no += 1 x=torch.Tensor(x)
x = Variable(x)
print(x)
'''
tensor([[ 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0.],
[ 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 0., 0., 0.],
[20., 9., 21., 22., 23., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[24., 25., 26., 27., 28., 29., 30., 31., 32., 13., 33., 34., 4., 7.]])
'''
lengths = torch.Tensor(lengths)
print(lengths)#tensor([ 8., 11., 5., 14.]) _, idx_sort = torch.sort(torch.Tensor(lengths), dim=0, descending=True)
print(_) #tensor([14., 11., 8., 5.])
print(idx_sort)#tensor([3, 1, 0, 2]) lengths = list(lengths[idx_sort])#按下标取元素 [tensor(14.), tensor(11.), tensor(8.), tensor(5.)]
t = x.index_select(0, idx_sort)#按下标取元素
print(t)
'''
tensor([[24., 25., 26., 27., 28., 29., 30., 31., 32., 13., 33., 34., 4., 7.],
[ 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 0., 0., 0.],
[ 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0.],
[20., 9., 21., 22., 23., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
'''
x_packed = nn.utils.rnn.pack_padded_sequence(input=t, lengths=lengths, batch_first=True)
print(x_packed)
'''
PackedSequence(data=tensor([24., 9., 1., 20., 25., 10., 2., 9., 26., 11., 3., 21., 27., 12.,
4., 22., 28., 13., 5., 23., 29., 14., 6., 30., 15., 7., 31., 16.,
8., 32., 17., 13., 18., 33., 19., 34., 4., 7.]), batch_sizes=tensor([4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1]))
''' x_padded = nn.utils.rnn.pad_packed_sequence(x_packed, batch_first=True)#x_padded是tuple
print(x_padded)
'''
(tensor([[24., 25., 26., 27., 28., 29., 30., 31., 32., 13., 33., 34., 4., 7.],
[ 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 0., 0., 0.],
[ 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0.],
[20., 9., 21., 22., 23., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), tensor([14, 11, 8, 5]))
'''
#还原tensor
_, idx_unsort = torch.sort(idx_sort)
output = x_padded[0].index_select(0, idx_unsort)
print(output)
'''
tensor([[ 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0.],
[ 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 0., 0., 0.],
[20., 9., 21., 22., 23., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[24., 25., 26., 27., 28., 29., 30., 31., 32., 13., 33., 34., 4., 7.]])
'''
pytorch中的pack_padded_sequence和pad_packed_sequence用法的更多相关文章
- [转载]PyTorch中permute的用法
[转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将ten ...
- Pytorch中randn和rand函数的用法
Pytorch中randn和rand函数的用法 randn torch.randn(*sizes, out=None) → Tensor 返回一个包含了从标准正态分布中抽取的一组随机数的张量 size ...
- Pytorch中nn.Conv2d的用法
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...
- PyTorch中view的用法
相当于numpy中resize()的功能,但是用法可能不太一样. 我的理解是: 把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其 ...
- pytorch中tensorboardX的用法
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...
- [PyTorch]PyTorch中反卷积的用法
文章来源:https://www.jianshu.com/p/01577e86e506 pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d ...
- pytorch中如何处理RNN输入变长序列padding
一.为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练 ...
- pytorch中如何使用DataLoader对数据集进行批处理
最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处 ...
- PyTorch中使用深度学习(CNN和LSTM)的自动图像标题
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...
随机推荐
- JPEG算法解密
图片压缩有多重要,可能很多人可能并没有一个直观上的认识,举个例子,一张800X800大小的普通图片,如果未经压缩,大概在1.7MB左右,这个体积如果存放文本文件的话足够保存一部92万字的鸿篇巨著< ...
- HTML 02
form表单 能够获取用户输入(包括输入, 选择和上传文件) 将用户的输入内容全部发送给后端 参数 action 向何处提交 不写, 默认朝当前页面所在地址提交数据 全写路径 (https://www ...
- Day 02 作业
作业 一 什么是编程? 基于编程语言的语法格式将自己脑中里想让计算机做的事,写到文件中. 二 简述计算机五大组成 控制器,运算器,存储器,输入设备,输出设备 三 操作系统有什么用? 操作系统直接与硬件 ...
- 【CSS】323- 深度解析 CSS 中的“浮动”
对于浮动这篇文章解析的狠透彻 ~ 写在最前 习惯性去谷歌翻译看了看 float 的解释: 其中有一句这样写的: she relaxed, floating gently in the water 瞬间 ...
- JS中的深拷贝和浅拷贝
浅拷贝 浅拷贝是拷贝第一层的拷贝 使用Object.assign解决这个问题. let a = { age: 1 } let b = Object.assign({}, a) a.age = 2 co ...
- 函数中this的指向
每个函数在被调用时都会自动取得两个特殊变量:this和arguments:内部函数在搜索这两个变量时,只会搜索到其活动对象为止,因此永远不可能直接访问外部函数中的这两个变量. f 1 var name ...
- spf13-vim 显示neocomplete requires ...th Lua support
安装spf13-vim的时候下载了许多插件,neocomplete应该是比较重要的一个,毕竟自动补全.但是在使用时却一直有:neocomplete requires ...th Lua support ...
- c语言入门到精通怎么能少了这7本书籍?
C语言作为学编程最好的入门语言,对一个初进程序大门的小白来说是很有帮助的,学习编程能培养一个人的逻辑思维,而C语言则是公认的最符合人们对程序的认知的一款计算机语言,很多大学都选择了使用C语言作为大学生 ...
- bsoj5988 [Achen模拟赛]期望 题解
bsoj5988 Description [题目背景] NOI2018 已经过去了许久,2019 届的 BSOIer 们退役的退役,颓废的颓废,计数能力大不如前.曾经的数数之王 xxyj 坦言:&qu ...
- 2019/12/11学习内容摘要(Linux系统用户与用户组管理①)
一,认识/etc/passwd和/etc/shadow 1. /etc/passwd :文件中保存系统中所有的用户和用户的主要信息. 在命令行输入 cat /etc/passwd | head ( ...