一、安装环境:windows10,anaconda3,python3.6

        由于框架maskrcnn需要json数据集,在没安装labelme环境和跑深度学习之前,我安装的是anaconda3,其中pyhton是3.7版本的,经网上查阅资料,经过一番查找资料,发现,原来在2019年,TensorFlow还不支持python3.7,所以,迫于无奈,我只能乖乖把python的版本退回到3.6版本,具体步骤也很简单。就是打开anaconda prompt ,然后输入conda install python=3.6,然后等待提示(y/n),输入y,等待十几分钟,就会提示done,这样的话,就表示python3.7已经退回到python3.6了。(经过尝试这种方法在我这里没有行得通,可能跟网速有关,又尝试了另一种方法,有兴趣的可以尝试一下。)索性就把labelme安装到3.6中了。

二、安装过程:

1、管理员身份打开 anaconda prompt

2、输入命令:conda create --name=labelme python=3.6

3、输入命令:activate labelme

4、输入命令:pip install pyqt5,pip install pyside2(自己刚开始没有安装pyside2,运行 \anaconda安装目录\envs\labelme\Scripts\label_json_to_dataset.exe 会出现module "pyside"缺失错误)

5、输入命令:pip install labelme(由于网络原因或者库的地址,经常运行一半出现错误,不要气馁,多执行几次)

6、输入命令:labelme   即可打开labelme。如下:

安装完成后,需要使用再次启动labelme。则需要重新打开anaconda prompt,输入activate labelme,进入labelme环境。再输 入命令: labelme 即可

三、用labelme标注完图片后,会生成json文件

   以小猫为例:点击保存会在自己的图片目录下生成json文件

点点

生成的json文件并不能直接用,我们需要对他进行批处理才能成为maskrcnn需要的数据集,批量转化如下:

abelme标注工具再转化.json文件有一个缺陷,一次只能转换一个.json文件,然而深度学习的项目通常需要大量的数据,那么转换.json文件就是一个比较耗时的工作;因此,对labelme做出了改进,可以实现批量转换.json文件。

在安装Anaconda中找到json_to_dataset.py文件如果未找到可以在计算机中搜索,将该文件代码修改为以下代码:

import argparse
import base64
import json
import os
import os.path as osp
import warnings import PIL.Image
import yaml from labelme import utils def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args() json_file = args.json_file alist = os.listdir(json_file) for i in range(0,len(alist)):
path = os.path.join(json_file,alist[i])
data = json.load(open(path)) out_dir = osp.basename(path).replace('.', '_')
out_dir = osp.join(osp.dirname(path), out_dir) if not osp.exists(out_dir):
os.mkdir(out_dir) if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value # label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln)
for ln, lv in label_name_to_value.items()]
lbl_viz = utils.draw_label(lbl, img, captions) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir) if __name__ == '__main__':
main()

操作命令如下图:

生成效果如下:每张图片生成五个文件 ,这就是我们所需要的

Win10系统下安装labelme,json文件批量转化的更多相关文章

  1. Win10系统下安装ubuntu16.04双系统-常见问题解答

    Win10系统下安装ubuntu16.04双系统-常见问题解答 1. 安装ubuntu16.04.2系统 磁盘分区形式有两种:GPT和MBR,关系到设置引导项.在win10下压缩出500GB空间给ub ...

  2. Xmind pro Win10系统下安装问题解决与破解

    Xmind pro Win10系统下安装问题解决与破解 1.下载安装版本 解压包含文件: xmind-8-update7-windows--安装包 和XMindCrack.jar--激活破解工具 2. ...

  3. Win10系统下安装Ubuntu16.04.3教程与设置

    在Win10上刚刚装好Ubuntu16.04.3,装了不下于10次,期间出现很多问题,趁着还有记忆,写下这篇教程,里面还有Ubuntu系统的优化与Win10的一些设置. Part 1 制作Ubuntu ...

  4. Win10系统下安装编辑器之神(The God of Editor)Vim并且构建Python生态开发环境(2020年最新攻略)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_160 众神殿内,依次坐着Editplus.Atom.Sublime.Vscode.JetBrains家族.Comodo等等一众编辑 ...

  5. Win10系统下安装Oracle服务器和Oracle客户端

    工作电脑从Win7换为Win10,在给Win10系统安装Oracle时花费了很长世间终于搞定,在此给大家分享下. 1.工作中需要连接测试环境.生产环境Oracle,所以安装了公司封装的Oracle客户 ...

  6. 个人亲测,在win10系统下安装多实例mysql8.0详细教程

    由于公司的新项目需要导入sql脚本,需要更高版本的mysql数据库,原来的数据库我也不想删除和升级,因此安装了第二个mysql8的实例,废话不多说,步骤如下: 1.下载mysqlGPL版本,我下载的版 ...

  7. C语言——Win10系统下安装VC6.0教程

    学习一门语言最重要的一步是搭建环境,许多人搭建在搭建环境上撞墙了,就有些放弃的心理了:俗话说,工欲善其事,必先利其器:所以接下来我们进行学习C的第一步搭建环境; 第一步:先解压我们下载好的VC6.0软 ...

  8. win10系统下安装64位Oracle11g+LSQL Developer

    LSQL Developer作为强大的Oracle编辑工具,却只支持32bit,本文提供在安装用LSQL Developer打开64bitOracle的操作方法 工具/原料  oracle11g安装包 ...

  9. Win10系统下安装VC6.0教程

    学习一门语言最重要的一步是搭建环境,许多人搭建在搭建环境上撞墙了,就有些放弃的心理了:俗话说,工欲善其事,必先利其器:所以接下来我们进行学习C的第一步下载编程所用的工具;当然也有其它的软件,只不过初学 ...

随机推荐

  1. gitlab安装笔记一_虚拟机中安装Centos7

    (为搭建gitlab环境的准备) 环境:vmware workstation 12 pro 系统: CentOS-7-x86_64-Everything-1804.iso  (CentOS-7-Min ...

  2. yii DAO操作总结

    数据库代码: /* Navicat MySQL Data Transfer Source Server         : lonxom Source Server Version : 50524 S ...

  3. 15 | 过不了的坎:聊聊GUI自动化过程中的测试数据

  4. CentOS 7出现Failed to start firewalld.service: Unit is masked的解决办法和firewalld 防火墙开关

    说明:刚刚使用systemctl start firewalld命令开启防火墙的时候,却开不成功,出现Failed to start firewalld.service: Unit is masked ...

  5. Python笔记【5】_字符串&列表&元组&字典之间转换学习

    #!/usr/bin/env/python #-*-coding:utf-8-*- #Author:LingChongShi #查看源码Ctrl+左键 #数据类型之间的转换 Str='www.baid ...

  6. C/C++应用程序内存泄漏检查统计方案

    一.前绪 C/C++程序给某些程序员的几大印象之一就是内存自己管理容易泄漏容易崩,笔者曾经在一个产品中使用C语言开发维护部分模块,只要产品有内存泄漏和崩溃的问题,就被甩锅“我的程序是C#开发的内存都是 ...

  7. 我以为我对Mysql索引很了解,直到我遇到了阿里的面试官

    GitHub 4.8k Star 的Java工程师成神之路 ,不来了解一下吗? GitHub 4.8k Star 的Java工程师成神之路 ,真的不来了解一下吗? GitHub 4.8k Star 的 ...

  8. Python 3.6 安装

    1. 下载 # 我下载到了 /tmp 目录中 cd /tmp wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz 2. 安装依赖 ...

  9. hive 之 Cube, Rollup介绍

    1. GROUPING SETS GROUPING SETS作为GROUP BY的子句,允许开发人员在GROUP BY语句后面指定多个统维度,可以简单理解为多条group by语句通过union al ...

  10. BZOJ 1878:[SDOI2009]HH的项链(莫队算法)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 题意:…… 思路:比上题还简单很多.数字很小,开一个数组哈希记录出现次数(记得数组要开1e6) ...