[ML机器学习 - Stanford University] - Week1 - 01 Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.
In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.
Unsupervised Learning
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results.
Example:
Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- ML:吴恩达 机器学习 课程笔记(Week1~2)
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...
- Core ML 机器学习
在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...
- ml机器学习笔记
一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...
随机推荐
- Class constructor FileManager cannot be invoked without 'new'
bug:今天项目重新安装依赖打包的时候出现错误:Class constructor FileManager cannot be invoked without 'new' 解决:尝试了很多种解决方案, ...
- MongoDB实现问卷/考试设计
MongoDB的特点 MongoDB是一个面向文档存储的数据库.在MongoDB中,一条记录叫做document(文档),由类似于JSON结构的键值对组成. 由于类似于MongoDB直接存储JSON的 ...
- Mysql UTF-8mb4字符集的问题
官方Mysql手册链接 https://dev.mysql.com/doc/connectors/en/connector-j-reference-charsets.html Notes For Co ...
- NetworkManager网络通讯_networkReader/Writer(六)
unet客户端和服务端进行消息发送时可以采用上一节中方法,也可以直接用networkReader/Writer类进行发送 (一)服务端/客户端注册消息 ; m_Server.RegisterHandl ...
- 四元数(Quaternion)
从应用角度说一下unity Quaternion,Quaternion是四元数,百度相关资料可能找到的都是一些大牛给你搞个矩阵云云,给你讲解四元数.在此只是从应用角度讲一讲.最简单理解四元数对应一个向 ...
- 调试webpack
调试webpack 1. 摘要 用过构建工具webpack的朋友应该都体会,面对其几百行的配置内容如大海一小舟,找不到边.看文档查百度,对其构建的生命周期看了又看.最终还是很茫然.原因很简单,构建配置 ...
- 全排列函数(next_permutation())
平常需要全排列的时候,一般都是dfs然后字符串匹配啥的……今天看题解的时候突然发现了这个神器. next_permutation()函数在c++的algorithm库里,作用是传入一个数组,输出这个数 ...
- 【暂时停更】Gungame更新下载平台
v1.0: 这是本游戏的第一个版本, 制作于2019.4.12. 控制 : Player1: wsad为移动, r键开炮(有朝向限制) Player2: ikjl为移动, p键开炮(有朝向限制) 下载 ...
- [Hadoop]Hive-1.2.x安装配置+Mysql安装
HIve的元数据存储在mysql中,需要配置与MySQL建立连接,除了安装MySQL外还要安装连接的jar包:mysql-connector-java-5.1.47.tar.gz 安装环境:Cen ...
- DOS打印目录树到文件
tree /f >>tree.txt 卷 数据 的文件夹 PATH 列表 卷序列号为 -FBAE E:. └─mysite │ manage.py │ └─mysite settings. ...