[ML机器学习 - Stanford University] - Week1 - 01 Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.
In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.
Unsupervised Learning
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results.
Example:
Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- ML:吴恩达 机器学习 课程笔记(Week1~2)
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...
- Core ML 机器学习
在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...
- ml机器学习笔记
一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...
随机推荐
- ESP8266开发之旅 网络篇⑭ web配网
1. 前言 目前,市面上流行多种配网方式: WIFI模块的智能配网(SmartConfig以及微信AirKiss配网) SmartConfig 配网方式 请参考博主之前的博文 ESP8266开 ...
- Spring Boot 2.X(十二):定时任务
简介 定时任务是后端开发中常见的需求,主要应用场景有定期数据报表.定时消息通知.异步的后台业务逻辑处理.日志分析处理.垃圾数据清理.定时更新缓存等等. Spring Boot 集成了一整套的定时任务工 ...
- JVM学习记录3--垃圾收集器
贴个图 Serial收集器 最简单的收集器,单线程,收集器会暂停用户线程,称为"stop the world". ParNew收集器 Serial收集器的多线程版本,其它类似.默认 ...
- SpringMVC重点知识总结
SpringMVC总结 1. SpringMVC简介 MVC即模型-视图-控制器(Model-View-Controller) Spring Web MVC是一种基于Java的实现了Web MVC设计 ...
- 如何在Idea中编译构建Spring Framework 5.x
如何在Idea中编译构建Spring Framework 5.x 安装配置Gradle(略) 下载源码:git clone https://github.com/spring-projects/spr ...
- css伪类选择器的查找顺序
当伪类选择器last-child.first-child无效时,就是因为不了解css伪类选择器的查找顺序造成选中某一元素失败. 先给出一段dom <body> <div>第一个 ...
- unity5.6.1 videoPlayer
unity5.6开始增加了videoPlayer,使得视频播放相对比较简单,项目需求进行了一下研究应用,也遇到很多坑,Google 百度一下发现确实有这些问题,一些简单问题如下: 1)播放无声音 2) ...
- 持久层框架JPA与Mybatis该如何选型
一.现状描述 目前java 持久层ORM框架应用最广泛的就是JPA和Mybatis.JPA只是一个ORM框架的规范, 对该规范的实现比较完整就是Spring Data JPA(底层基于Hibernat ...
- 提高首屏页面加载速度,解决vue-cli打包后单个文件过大的问题
本教程是针对vue-cli3以上的版本,其实原理都大同小异,这个demo为vue-cli直接创建的项目,并在main.js中引入了echart.element-ui.lodash 首先看demo打包后 ...
- [windows篇] 使用Hexo建立个人博客,自定义域名https加密,搜索引擎google,baidu,360收录
为了更好的阅读体验,欢迎阅读原文.原文链接在此. [windows篇] 使用Hexo建立个人博客,自定义域名https加密,搜索引擎google,baidu,360收录 Part 2: Using G ...