题意

李超树板子题。

对每个区间维护该区间中点\(mid\)的最优线段。

插入一个线段:

求出这个线段的斜率和截距,注意特判无斜率的情况,得到\(y=kx+b\)。

之后开始在线段树上插入,假设当前节点\(p\)区间为\([l,r]\)包含在插入区间内,那么比较插入的线段\(id\)与当前维护的线段\(pos\),分类讨论:

1.\(id\)完全优于\(pos\):直接替换。

2.\(id\)完全劣于\(pos\):什么也不做。

3.找到在\(mid\)优的那条线段,将劣的那条下放到左右儿子中,那边有优势(相较于在\(mid\)更优的那条)下放哪边。

查询:

查到叶子节点后回溯,不断当前节点维护的(我们插入时把劣的那条下放,因此叶子结点不一定最优)比较。

code:

#include<bits/stdc++.h>
using namespace std;
#define ls(p) (p<<1)
#define rs(p) (p<<1|1)
const int maxn=40000;
const int maxm=1e5+10;
const double eps=1e-8;
int n,m,lastans,cnt;
int maxpos[maxn<<2];
double k[maxm],b[maxm];
inline int read()
{
char c=getchar();int res=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
return res*f;
}
inline double f(int x,int id){return k[id]*x+b[id];}
inline bool check(int a,int b,int x){return fabs(f(x,a)-f(x,b))>eps?f(x,a)<f(x,b):a>b;}
void insert(int p,int l,int r,int ql,int qr,int id)
{
int mid=(l+r)>>1;
if(l>=ql&&r<=qr)
{
if(check(id,maxpos[p],l)&&check(id,maxpos[p],r))return;
if(!check(id,maxpos[p],l)&&!check(id,maxpos[p],r)){maxpos[p]=id;return;}
if(!check(id,maxpos[p],mid))swap(id,maxpos[p]);
if(!check(id,maxpos[p],l))insert(ls(p),l,mid,ql,qr,id);
else insert(rs(p),mid+1,r,ql,qr,id);
return;
}
if(ql<=mid)insert(ls(p),l,mid,ql,qr,id);
if(qr>mid)insert(rs(p),mid+1,r,ql,qr,id);
}
int query(int p,int l,int r,int pos)
{
if(l==r)return maxpos[p];
int mid=(l+r)>>1,res;
res=pos<=mid?query(ls(p),l,mid,pos):query(rs(p),mid+1,r,pos);
res=check(res,maxpos[p],pos)?maxpos[p]:res;
return res;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
int op=read();
if(!op)
{
int k=(read()+lastans-1)%39989+1;
printf("%d\n",lastans=query(1,1,40000,k));
}
else
{
int x0=(read()+lastans-1)%39989+1,y0=(read()+lastans-1)%1000000000+1,x1=(read()+lastans-1)%39989+1,y1=(read()+lastans-1)%1000000000+1;
cnt++;
if(x1<x0)swap(x0,x1),swap(y0,y1);
if(x0==x1)k[cnt]=0,b[cnt]=max(y0,y1);
else k[cnt]=1.0*(y1-y0)/(x1-x0),b[cnt]=1.0*y0-1.0*k[cnt]*x0;
insert(1,1,40000,x0,x1,cnt);
}
}
return 0;
}

luoguP4097 [HEOI2013]Segment的更多相关文章

  1. bzoj 3165: [Heoi2013]Segment 动态凸壳

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 202  Solved: 89[Submit][Stat ...

  2. 【BZOJ3165】[HEOI2013]Segment(李超线段树)

    [BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...

  3. 洛谷 P4097 [HEOI2013]Segment 解题报告

    P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...

  4. BZOJ 3165: [Heoi2013]Segment

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 465  Solved: 187[Submit][Sta ...

  5. Bzoj 3165 [Heoi2013]Segment题解

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 668  Solved: 276[Submit][Sta ...

  6. HEOI2013 Segment

    传说中的“李超树”. 大意:给你若干线段,试求横坐标x上的最上方一条线段的编号.无则输出零. 解:用线段树维护. 插入的时候保存自己这个区间上可能成为最大值的线段,被抛弃的则看情况下放. 查询时从最底 ...

  7. BZOJ3165 : [Heoi2013]Segment

    建立线段树,每个节点维护该区间内的最优线段. 插入线段时,在线段树上分裂成$O(\log n)$棵子树,若与当前点的最优线段不相交,那么取较优的,否则暴力递归子树. 查询时在叶子到根路径上所有点的最优 ...

  8. 【题解】Luogu P4097 [HEOI2013]Segment

    原题传送门 这珂以说是李超线段树的模板题 按着题意写就行了,时间复杂度为\(O(n\log^2n)\) #include <bits/stdc++.h> #define N 40005 # ...

  9. BZOJ3165[Heoi2013]Segment——李超线段树

    题目描述 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第i条被插入的线段的标号为i. 2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. 输入 第一行 ...

随机推荐

  1. vscode笔记

    一.修改操作栏字体 https://www.cnblogs.com/liuyangfirst/p/9759966.html 1.代码改写,进入默认安装的如下路径,搜索workbench 2.用Vs c ...

  2. 设计模式-Facade(结构型模式) 针对 最终类的实现通过一系列类的相关操作,重点关注 起始与结尾的操作。

    以下代码来源: 设计模式精解-GoF 23种设计模式解析附C++实现源码 //Facade.h #pragma once class Subsystem1 { public: Subsystem1() ...

  3. CSP-S 2019文澜中学游记(11.15~11.17)

    前言 今年的\(CSP-S\),本以为自己的实力与去年的\(NOIP\)相比,能有较大的提升的. 没想到,菜是原罪,弱就是弱,依然逃脱不了被吊锤的命运. \(Nov\ 15th\):\(Day\ 0\ ...

  4. python 各层级目录下的import方法

    ---恢复内容开始--- 以前经常使用python2.现在很多东西都切换到了python3,发现很多东西还是存在一些差异化的.跨目录import是常用的一种方法,并且有不同的表现形式,新手很容易搞混. ...

  5. 理解Promise.all,Promise.all与Promise.race的区别,如何让Promise.all在rejected失败后依然返回resolved成功结果

     壹 ❀ 引 我在 es6入门4--promise详解 这篇文章中有详细介绍Promise对象的用法,文章主题更偏向于对于Promise概念的理解与各方法基本使用介绍:而世上一个比较有趣的问题就是,即 ...

  6. SQLServer某个库log日志过大,无法收缩日志文件 ,因为该文件结尾的逻辑日志文件正在使用

    问题描述: 今天看到user库日志备份方面很久,然后查看到user库这个log日志很大 图片是我已经解决了,然后现在可以收缩的大小 解决方法: 1.先备份user库日志,因为很大,所以要等很久,这个只 ...

  7. 让iphone5s 支持 flex 布局

    /* Center slide text vertically */display: -webkit-box;display: -ms-flexbox;display: -webkit-flex;di ...

  8. elasticsearch 索引的使用(配合haystack)

    1,# 从仓库拉取镜像$ sudo docker image pull delron/elasticsearch-ik:2.4.6-1.02,下载elasticsearc-2.4.6目录拷贝到home ...

  9. MySQL for OPS 12:锁处理

    写在前面的话 在前面的内容中提到过,在以前的 MyISAM 中锁是表级锁,InnoDB 是行级锁.这个锁到底是啥样,怎么找出来,这一节就主要做这个. 定位锁的问题 上一节我们创建了一个 1000万数据 ...

  10. 数据库之MySQL查询

    查询 创建数据库.数据表 -- 创建数据库 create database python_test1 charset=utf8; -- 使用数据库 use python_test1; -- stude ...