time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output

Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.

Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

Input

The only line contains two integers a and b (1≤a,b≤10^9).

Output

Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.

If there are many possible integers k giving the same value of the least common multiple, print the smallest one.

Examples
 
input
6 10
output
2
input
21 31
output
9
 
 
input
5 10
output
0
 
 
Note

In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.

题解

假设a <= b,根据LCMGCD的关系知:LCM(a,b) = a*b/GCD(a,b),要求最小的k满足最小的LCM(a+k,b+k) = (a+k)*(b+k)/GCD(a+k,b+k),由更相减损法知,GCD(a+k,b+k) = GCD(a+k,b-a)。这样就使得GCD中有一项(即b-a)是固定的,这样有什么好处呢?没错,就是GCD(a+k,b-a)的结果一定是b-a的某个因子,而b-a的所有因子是有限个,且可以在sqrt(b-a)的时间内求出,故枚举b-a所有的因子即可。对于b-a的每一个因子di,都可以求出最小的ki = di - a%d(a%di != 0) 或者ki = 0 (a%di == 0),再代回公式计算,保留使得LCM(a+k,b+k)最小的k即可。

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#define re register
#define il inline
#define ll long long
#define ld long double
const ll MAXN = 1e6+;
const ll INF = 1e8; ll f[MAXN]; //快读
il ll read()
{
char ch = getchar();
ll res = , f = ;
while(ch < '' || ch > '')
{
if(ch == '-') f = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
res = (res<<) + (res<<) + (ch-'');
ch = getchar();
}
return res*f;
} //辗转相除法
ll gcd(ll a, ll b)
{
ll mx = std::max(a,b);
ll mi = std::min(a,b);
return mi == ? mx : gcd(mi,mx%mi);
} int main()
{
ll a = read();
ll b = read();
ll mx = std::max(a,b);
ll mi = std::min(a,b);
ll tot = ;
ll c = mx-mi;
ll n = sqrt(c);
//枚举c的所有因子
for(re ll i = ; i <= n; ++i)
{
if(!(c%i))
{
f[++tot] = i;
f[++tot] = c/i;
}
}
//依次代回c的因子计算
ll k = ;
ll d = a*b/gcd(a,b);
for(re ll i = ; i <= tot; ++i)
{
ll tk = !(mi%f[i]) ? : f[i]-mi%f[i];
ll td = (a+tk)*(b+tk)/f[i];
if(td <= d)
{
if(td == d) k = std::min(k,tk); //二者相同取最小的k
else k = tk;
d = td;
}
}
printf("%lld\n", k);
return ;
}

CodeForces-1152C-Neko does Maths的更多相关文章

  1. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  2. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  3. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  4. L - Neko does Maths CodeForces - 1152C 数论(gcd)

    题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...

  5. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

  6. Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...

  7. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  8. Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))

    传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...

  9. codeforces#1152D. Neko and Aki's Prank(dp)

    题目链接: https://codeforces.com/contest/1152/problem/D 题意: 给出一个$n$,然后在匹配树上染色边,每个结点的所有相邻边只能被染色一次. 问,这颗树上 ...

  10. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

随机推荐

  1. (4)ardunio 矩阵求解官方库改造,添加逆的求解

    多此一举,原来官方库给了求逆的函数,在源码里 除此之外,还有转置矩阵,只不过样例没显示出来. //Matrix Inversion Routine // * This function inverts ...

  2. 1-ESP8266 SDK开发基础入门篇--开发环境搭建

    因为今天终于做好了自己的另一块工控板,所以我就开始写基础公开篇的内容,希望自己小小的努力能够帮到大家 自己做的另一块板子 https://www.cnblogs.com/yangfengwu/cate ...

  3. 【loj2985】【WC2019】I君的商店

    题目 交互题: 有\(n\)个物品,每个物品的价格为0或者1; 给出为1的物品的个数奇偶性k,并保证至少有一个价格为1: 每次可以询问一个集合S的另一个集合T的价值和的大小,交互库会返回>=或者 ...

  4. MATLAB 线性规划实例应用

    线性规划 线性规划函数 功能:求解线性规划问题 语法 x = linprog(f,A,b):求解问题 min fx,约束条件为 Ax <= b x = linprog(f,A,b,Aeq,beq ...

  5. shell 修改文件所有者

    chown   用户名   文件名  -R

  6. [内网渗透]Cobaltstrike指令大全

    0x01 安装 Cobaltstrike是需要java环境才能运行的 linux下终端运行: sudo apt-get install openjdk-8-jdk windows下: 百度一堆配置JA ...

  7. POI报表打印

    一.Excel报表(POI) 1.需求说明 在企业级应用开发中,Excel报表是一种最常见的报表需求.Excel报表开发一般分为两种形式: 1.为了方便操作,基于Excel的报表批量上传数据 2.通过 ...

  8. 【转】Android ROM分析(1):刷机原理及方法

    一.刷机原理 android系统启动的时候,首先会进行一些诸如硬件自检之类的操作,这些操作完成以后(至少它应该知道当前的机器有没有电),会检查一下当前手机按键的状态(接下来就是所谓刷机模式切换了,不同 ...

  9. android 连接蓝牙打印机 BluetoothAdapter

    android 连接蓝牙打印机 BluetoothAdapter 源码下载地址:https://github.com/yylxy/BluetoothText.git public class Prin ...

  10. firewall防火墙常用操作

    # firewall防火墙常用操作 - 启动```systemctl start firewalld```- 停止```systemctl stop firewalld```- 重启```system ...