Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models
Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models
2019-06-13 10:28:44
Paper: [abs] [Download PDF][Supplementary PDF] Eldan Cohen, Christopher Beck ; PMLR 97:1290-1299
1. Background and Motivation:
Beam search 是一种常用在时序任务中解码算法,如:NLP 中的语言翻译,Image Captioning 等。不同于一般的贪婪搜索策略,该算法会始终维持相同的搜索宽度,最终会输出该宽度的多个搜索结果。就是因为这种天然的优势,该算法被广泛的应用于各种时序任务中。但是,大量的研究表明,beam search 存在如下的不足:“随着 width” 的增加,最终的效果也会不断降低,即:增加 width,不能提升效果,该算法只能在特定的较小的 width 条件下,才会 work 的很好。
针对上述问题,作者在本文中在多个任务上进行了大量的实验,来研究这个问题:machine translation,abstract summarization, and image captioning。作者在这些实验的基础上,提出了一种可解释的模型,该模型基于 search discrepancies(搜索差异性) 的概念,然后基于该差异性的分布进行了经验性的研究。主要贡献如下:
1). 本文表明增加 beam width 将会导致 solution 在早期有较大的不一致性 (discrepancies);这些序列通常会有较低的评价得分,从而导致最终的性能衰减。
2). 本文所提出的 explanatory model generalizes the previouly observed "copies" and predictions that repeat training set targets and accounts for more of the degraded predictions.
3). 本文表明对 beam search 进行修改,使其不考虑 large search discrepancies 可以有效的缓解性能衰减。
2. Neural Sequence Models:

在神经序列模型中,通过充分的搜索以求得一个全局最优序列几乎是不可能的。贪心算法会在每一个时刻,选择一个最优的候选,使得序列局部最优,但是可能最终得到的仅仅是一个局部次优的序列。Beam search 将每一个时刻的可能序列宽度拓展为 B,这个 B 称为 beam width。正式的来说,beam search candidate 通过如下的方式进行更新:

本文将 search discrepancy 定义为:extending a partial sequence with a token that is not the most probable one. 正式的来说,一个序列 y 在时刻 t 有一个 search discrepancy,如果其满足如下的条件:

我们将最可能的 token 和 选择的 token 的差异性,取 log,记为:

为了说明该 discrepancy gap 是如何计算的,我们给出了上图1。具有最高条件概率候选的 discrepancy gap 为 0,其他候选之间的 gap 就是其 log 概率的距离。
3. Discrepancy-Constrained Beam Search:
本文评价了两种类似 trick 的方法来约束 beam search,都是考虑到较大的搜索差异。
Discrepancy Gap:
给定阈值 M,我们修改 beam search 来仅仅考虑搜索差异小于等于 M 的候选。正式的来说,我们修改公式 1,使其包含这一约束:

Beam Candidate Rank:
给定阈值 N,我们修改 $y_t$ 使其在每一个 beam 中仅仅包含 top N one-token extensions。注意到,beam search 仍然保持 top B candidates,然而在每一个 beam 中,其不会考虑超过 N 的候选。
4. Experiments:
作者的实验表明,当考虑到作者提到的不一致性约束时,在增加 beam width 的时候,就不存在精度下降的问题了。但是这个表格貌似也反映了,beam width 设置的太大,有些情况下,并不会明显提升精度,反而有可能降低。到底该不该设置较大的 beam width,还是应该调调参数,试试才知道哇。

==
Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models的更多相关文章
- Beam Search(集束搜索/束搜索)
		找遍百度也没有找到关于Beam Search的详细解释,只有一些比较泛泛的讲解,于是有了这篇博文. 首先给出wiki地址:http://en.wikipedia.org/wiki/Beam_searc ... 
- 关于Beam Search
		Wiki定义:In computer science, beam search is a heuristic search algorithm that explores a graph by exp ... 
- [0.0]Analysis of Baidu search engine
		Rencently, my two teammates and I is doing a project, a simplified Chinese search engine for childre ... 
- 【NLP】选择目标序列:贪心搜索和Beam search
		构建seq2seq模型,并训练完成后,我们只要将源句子输入进训练好的模型,执行一次前向传播就能得到目标句子,但是值得注意的是: seq2seq模型的decoder部分实际上相当于一个语言模型,相比于R ... 
- 集束搜索beam search和贪心搜索greedy search
		贪心搜索(greedy search) 贪心搜索最为简单,直接选择每个输出的最大概率,直到出现终结符或最大句子长度. 集束搜索(beam search) 集束搜索可以认为是维特比算法的贪心形式,在维特 ... 
- 关于 Image Caption 中测试时用到的 beam search算法
		关于beam search 之前组会中没讲清楚的 beam search,这里给一个案例来说明这种搜索算法. 在 Image Caption的测试阶段,为了得到输出的语句,一般会选用两种搜索方式,一种 ... 
- 实现nlp文本生成中的beam search解码器
		自然语言处理任务,比如caption generation(图片描述文本生成).机器翻译中,都需要进行词或者字符序列的生成.常见于seq2seq模型或者RNNLM模型中. 这篇博文主要介绍文本生成解码 ... 
- Beam Search
		Q: 什么是Beam Search? 它在NLP中的什么场景里会⽤到? 传统的广度优先策略能够找到最优的路径,但是在搜索空间非常大的情况下,内存占用是指数级增长,很容易造成内存溢出,因此提出了beam ... 
- beam search 和 greedy search
		贪心搜索(greedy search): 贪心搜索最为简单,直接选择每个输出的最大概率,直到出现终结符或最大句子长度. 集束搜索(beam search): 集束搜索可以认为是维特比算法的贪心形式,在 ... 
随机推荐
- SocksCap代理
			所有Windows应用都可以使用Socks代理上网,即使不支持Socks代理的应用也可以用Socks代理上网 配置代理 点击"添加",代理类型可以修改, 支持代理测试 运行程序 点 ... 
- C#创建DataTable(转载)
			来源:https://www.cnblogs.com/xietianjiao/p/11213121.html方法一: DataTable tblDatas = new DataTable(" ... 
- PHP生成小程序二维码
			/** * [生成小程序二维码] * @return [type] [description] */ public function makeMiniQrcode_do() { begin: $id ... 
- Give root password for maintenance
			linux开机出现"Give root password for maintenance (or type Control-D to continue):" 出现这种情况一般为两种 ... 
- Linux操作系统之更改启动菜单的背景图实战案例
			Linux操作系统之更改启动菜单的背景图实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.制作图像并上传到服务器 1>.使用window 10操作系统自带的画图工具 ... 
- Linux操作系统的计划任务
			Linux操作系统的计划任务 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.任务计划概述 Linux任务计划.周期性任务执行 未来的某时间点执行一次任务: at: 指定时间点, ... 
- docker学习2-快速搭建centos7-python3.6环境
			前言 当我们在一台电脑上搭建了python3.6的环境,下次换了个电脑,或者换成linux的系统了,又得重新搭建一次,设置环境变量.下载pip等操作. 好不容易安装好,一会Scrips目录找不到pip ... 
- Linux安装部署项目实例
			本次安装jdk,mysql,maven,redis,nginx,tomcat 安装之前先升级系统 使用命令:/bin/yum - y update 1.安装jdk 先建立一个项目的目录-jiaoton ... 
- zabbix4.2.5常见问题指南
			一.zabbix配置postgres监控 rpm -ivh https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-7-x86_64 ... 
- php+tcpdf如何把生成的pdf文件保存在服务端
			tcpdf组件目前应用得非常广泛,但是对于如何把生成的pdf文件自动保存在服务端却很少有人提及.让我们先来看看标准输出代码: //服务器存档模式 $pdf->Output('output.p ... 
