莫烦TensorFlow_05 add_layer
import tensorflow as tf
import numpy as np def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis] # 一列;[np.newaxis,:] 一行
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #input layer 1
#hidden layer 10
#output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 行数不固定,列数是1
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
reduction_indices=[1]
)
) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
if i % 50 == 0:
print(sess.run(loss,
feed_dict={xs:x_data, ys:y_data}
)
)

莫烦TensorFlow_05 add_layer的更多相关文章
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- 【莫烦Pytorch】【P1】人工神经网络VS. 生物神经网络
滴:转载引用请注明哦[握爪] https://www.cnblogs.com/zyrb/p/9700343.html 莫烦教程是一个免费的机器学习(不限于)的学习教程,幽默风俗的语言让我们这些刚刚起步 ...
- 稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。
稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单 ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
随机推荐
- Python高级应用程序设计任务要求
Python高级应用程序设计任务要求 用Python实现一个面向主题的网络爬虫程序,并完成以下内容:(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台) 一.主题式网络爬虫设计方案( ...
- Vue v-for操作对象与数值
<!doctype html> <html lang="en"> <head id="head"> <meta cha ...
- 【BZOJ4816】[SDOI2017] 数字表格(莫比乌斯反演)
点此看题面 大致题意: 求\(\prod_{i=1}^n\prod_{j=1}^mf(gcd(i,j))\). 推式子 首先,按照套路我们枚举\(gcd\),得到: \[\prod_{d=1}^{mi ...
- Redis与python
一.Redis介绍 Redis是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库(非关系型数据库). 本质:将数据保存在内存中. 用途:缓存.消息队列. 1.Redis的特点 R ...
- Luogu P4585 [FJOI2015]火星商店问题
颓文化课作业到很晚写篇博客清醒一下 首先我们仔细阅读并猜测了题意之后,就会想到一个暴力的线段树套可持久化0/1Trie的做法,但是它显然是过不去的 由于最近再做线段树分治的题,我们可以想到用线段树分治 ...
- Unity 2018 Cookbook (Matt Smith 著)
1. Displaying Data with Core UI Elements (已看) 2. Responding to User Events for Interactive UIs (已看) ...
- Oracle 存储过程包(Package、Package Body)
初出茅庐,不知原来存储过程还可以写得如此复杂,而且还竟然可以调试! 好吧,得整理一下存储过程的一些语法,以备以后用到时可以查阅. 使用数据库:Oracle 数据库工具:PL/SQL Developer ...
- 在jenkins中处理外部命令7z的异常
powershell中有自己的异常捕获机制,但是在jenkins中处理第三方工具抛出的异常时,一直抓不到,疑惑了很久,本篇内容主要描述此次过程及解决方案. powershell可以处理外部异常 try ...
- netstat查看端口状态
netstat netstat -tunlp 用于显示 tcp,udp 的端口和进程等相关情况. netstat 查看端口占用语法格式: netstat -tunlp | grep 端口号 -t (t ...
- RestTemplate的三种请求方式
转载 https://blog.csdn.net/qq_36364521/article/details/84203133