【pytorch 代码】pytorch 网络结构可视化
部分内容转载自 http://blog.csdn.net/GYGuo95/article/details/78821617,在此表示由衷感谢。
此方法需要安装python-graphviz: conda install -n pytorch python-graphviz 或者 sudo apt-get install graphviz
别忘了先把下面的代码下载到自己的路径(感谢大神)。
visualize.py
from graphviz import Digraph
import torch
from torch.autograd import Variable def make_dot(var, params=None):
""" Produces Graphviz representation of PyTorch autograd graph
Blue nodes are the Variables that require grad, orange are Tensors
saved for backward in torch.autograd.Function
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
if params is not None:
assert isinstance(params.values()[0], Variable)
param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled',
shape='box',
align='left',
fontsize='',
ranksep='0.1',
height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set() def size_to_str(size):
return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
name = param_map[id(u)] if params is not None else ''
node_name = '%s\n %s' % (name, size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(var.grad_fn)
return dot
下面是使用方法:
因人而异,根据网络调整输入,以Inception V3为例。
from MyInceptionV3 import inception_v3
import numpy as np
import torch
from torch.autograd import Variable
from visualize import make_dot if __name__ == '__main__':
x=np.arange(2*299*299*3)
x=x.reshape(2,3,299,299)
x=x/float(x.max())
x=torch.from_numpy(x)
x=x.float()
x=Variable(x) a = inception_v3(pretrained=True) y = a(x)
g = make_dot(y)
#g.view()
g.render('here', view=False)
我的电脑没有可视化界面,一定要记得False那个view。(网络结构会保存成pdf)结果图太复杂不粘贴了。
【pytorch 代码】pytorch 网络结构可视化的更多相关文章
- Pytorch使用tensorboardX网络结构可视化。超详细!!!
https://www.jianshu.com/p/46eb3004beca 1 引言 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorbo ...
- Pytorch的网络结构可视化(tensorboardX)(详细)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/xiaoxifei/article/det ...
- Pytorch 网络结构可视化
安装 conda install graphvizconda install tensorwatch 载入库 import sysimport torchimport tensorwatch as t ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型训练篇)
本文所用代码gayhub的地址:https://github.com/chenyuntc/simple-faster-rcnn-pytorch (非本人所写,博文只是解释代码) 好长时间没有发博客了 ...
- 残差网络resnet理解与pytorch代码实现
写在前面 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服 ...
- (原)SphereFace及其pytorch代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...
- 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- PyTorch代码调试利器: 自动print每行代码的Tensor信息
本文介绍一个用于 PyTorch 代码的实用工具 TorchSnooper.作者是TorchSnooper的作者,也是PyTorch开发者之一. GitHub 项目地址: https://github ...
- 如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码, ...
随机推荐
- js基本包装类型及Math对象(八)
一.基本包装类型[继承于Object类型]1.Number().String().Boolean()引用数据类型[包装类型]分别对应的基本数据类型为number.string.boolean. 2.当 ...
- v8--sort 方法 源码 (1) 插入排序法
v8--sort方法源码中对于长度较短的数组使用的是插入排序法. 部分源码: function InsertionSort(a, from, to) { for (var i = from + 1; ...
- MySQL CentOS7 手动安装
手动安装MySQL的目的: 1.一个服务器上可以同时装多个版本,甚至相同版本MySQL的多个实例,这种需求很常见: 2.一次初始化和配置后,可以快速复制到本服务器或其他服务器,及封装为初始MySQL的 ...
- 笔谈AudioToolbox(一)
“五一”长假过的真快,三天就这么过去了.新的一周开始了,这周搞搞iOS平台上音频的解码与播放.动手咯,切入AudioToolbox.framework的学习,这个库太强大了,要想彻底弄懂不简单,从某种 ...
- Requirements management in confluence
https://ja.confluence.atlassian.com/doc/blog/2015/08/how-to-document-product-requirements-in-conflue ...
- Linux命令——mknode
参考:What is the mknod command used for? 前言 Linux下面,一切皆文件,当然也包括设备.Linux通过major.minor号来区分不同设备,如下图
- 17、Learning and Transferring IDs Representation in E-commerce笔记
一.摘要 电子商务场景:主要组成部分(用户ID.商品ID.产品ID.商店ID.品牌ID.类别ID等) 传统的编码两个缺陷:如onehot,(1)存在稀疏性问题,维度高(2)不能反映关系,以两个不同的i ...
- ThinkPHP模板之一
这个东东,就得多练多写,无它法. 1,Application\Home\Controller\IndexController.class.php <?php namespace Home\Con ...
- 51nod 1115 最大M子段和 V3
环形最大M子段和,N个整数组成的序列排成一个环,a[1],a[2],a[3],…,a[n](a[n-1], a[n], a[1]也可以算作1段),将这N个数划分为互不相交的M个子段,并且这M个子段的和 ...
- 树莓派 Linux 系统命令行快捷键
刚入门树莓派时,在 Linux 下使用命令操作的时候,光标的移动令人头痛.命令输入完了,执行之后发现缺少权限,然后不得不移动光标到行首加 sudo,而命令又极长……当我学会了命令行相关的快捷键之后,不 ...