Description

windy定义了一种windy数。不含前导零且相邻两个数字之差至少为 \(2\) 的正整数被称为windy数。 windy想知道,

在 \(A\) 和 \(B\) 之间,包括 \(A\) 和 \(B\),总共有多少个windy数?

Limitation

\(1 \leq A \leq B \leq 2000000000\)

Solution

前天重写这个题,换了一种比较好写的DP方式,这里记下来。

考虑由于前导 \(0\) 和顶上界都最多可能有 \(1\) 中方案,因此直接使用一个 bool 变量记录即可。

设 \(f_{i, j}\) 是考虑前 \(i\) 位,第 \(i\) 位是 \(j\) 且不顶上界的方案数,这样的转移就非常好写了。、

Code

#include <cmath>
#include <cstdio>
#include <cstring> const int maxn = 100; int x, y;
int A[maxn], B[maxn];
ll frog[maxn][10]; int ReadNum(int *p);
ll calc(const int *const num, const int n); int main() {
freopen("1.in", "r", stdin);
int x = ReadNum(A); y = ReadNum(B);
for (int i = x - 1; ~i; --i) {
if ((--A[i]) >= 0) {
break;
} else {
A[i] = 9;
}
}
if (A[x] == 0) { --x; }
qw(calc(B, y) - calc(A, x), '\n', true);
return 0;
} int ReadNum(int *p) {
auto beg = p;
do *p = IPT::GetChar() - '0'; while ((*p < 0) || (*p > 9));
do *(++p) = IPT::GetChar() - '0'; while ((*p >= 0) && (*p <= 9));
return p - beg;
} ll calc(const int *const num, const int n) {
if (n <= 1) {
return num[0];
}
memset(frog, 0, sizeof frog);
bool upc = true;
for (int i = 1; i < num[0]; ++i) {
frog[0][i] = 1;
}
for (int i = 1; i < n; ++i) {
int di = i - 1;
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) if (abs(j - k) >= 2) {
frog[i][j] += frog[di][k];
}
++frog[i][j];
}
--frog[i][0];
if (upc) {
for (int k = 0; k < num[i]; ++k) if (abs(num[di] - k) >= 2) {
++frog[i][k];
}
if (abs(num[di] - num[i]) < 2) {
upc = false;
}
}
}
ll _ret = 0;
for (int i = 0, dn = n - 1; i < 10; ++i) {
_ret += frog[dn][i];
}
return _ret + upc;
}

【数位DP】【P2657】[SCOI2009]windy数的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  3. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  4. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  5. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  6. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  7. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  8. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

  9. 洛谷P2657 [SCOI2009]windy数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2657 题目大意:找区间 \([A,B]\) 范围内 不含前导零 且 相邻两个数字之差至少为2 的正整数的个数. 题目分 ...

  10. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

随机推荐

  1. python解决自动化测试静态页面加载慢的情况

    # coding:utf8from selenium import webdriverimport time # 创建一个ChromeOptions的对象option = webdriver.Chro ...

  2. nohup 启动后台应用

    nohup java -Xmx1024M -Xms1024M -jar app.jar --logging.level=warn --logging.path=/var/log/app--server ...

  3. 一般处理程序Session

    1.要在一般处理程序中获取其他页面的session值,需要引用名空间: using System.Web.SessionState; 2.然后继承一个接口:IRequiresSessionState ...

  4. instr函数的用法

    1.定义 instr函数返回要截取的字符串在源字符串中的位置 语法如下:  instr( string1, string2 [, start_position [, nth_appearance ] ...

  5. oracle 10 升级补丁

    Ooacle 10g补丁安装方法 Windows 平台 方法: 1.  备份数据库:关闭数据库,拷贝,安装软件目录,数据文件拷到另一个地方 2.  关闭停止所有oracle 服务+Distribute ...

  6. NetCoreApi框架搭建三、AutoFac 依赖入注)

    这里不多做理论上的解释,因为我感觉自己也不是很完全的理解,所以只是记录我自己做的过程. 首先还是粘贴大神的链接:https://www.cnblogs.com/RayWang/p/11165509.h ...

  7. 使用xdebug对php做性能分析调优

    作为PHP程序员我们或多或少都了解或使用过xdebug.此文章记录安装和配置xdebug,以及如何使用它来分析php程序. 我的机器环境: mac, php 安装 xdebug 推荐使用 pecl 安 ...

  8. PAT 1026程序运行时间

    PAT 1026程序运行时间 要获得一个 C 语言程序的运行时间,常用的方法是调用头文件 time.h,其中提供了 clock() 函数,可以捕捉从程序开始运行到 clock() 被调用时所耗费的时间 ...

  9. C# 中using 用来释放资源的用法

    using(...) {........} 定义了一个范围,等范围结束以后进行资源的释放. 例如: using(SqlConnection conn = new SqlConnection(" ...

  10. WDA基础十八:Select option配置

    为了省代码...为了方便管理WDA的查询条件... 首先建配置表: 说明: 上面的KEY基本都是维护的维度,可以根据销售组织,根据用户组,根据组件,根据SELECT OPTION的不同...等等,可以 ...