原文:https://www.cnblogs.com/denny402/p/7520063.html

原文:https://www.jianshu.com/p/84f72791806f

原文:https://blog.csdn.net/lee813/article/details/89609691

1、下载fashion-mnist数据集

  地址:https://github.com/zalandoresearch/fashion-mnist

  下面这四个都要下载,下载完成后,解压到同一个目录,我是解压到“E:/fashion_mnist/”这个目录里面,好和下面的代码目录一致

2、在Geany中执行下面这段代码。

  这段代码里面,需要先用pip安装skimage、torch、torchvision,前两篇文章有安装步骤。

  这段代码的作用:将下载下来的 二进制文件 转换为 图片,会在目录中生成两个文件夹和两个文本。

          文件夹里面全是图片,图片的内容是数字,N多数字。

          文本的内容主要是图片和真实数字的一个关联。

import os
from skimage import io
import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/"
train_set = (
mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
)
test_set = (
mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
)
print("training set :",train_set[0].size())
print("test set :",test_set[0].size()) def convert_to_img(train=True):
if(train):
f=open(root+'train.txt','w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
img_path=data_path+str(i)+'.jpg'
io.imsave(img_path,img.numpy())
f.write(img_path+' '+str(label)+'\n')
f.close()
else:
f = open(root + 'test.txt', 'w')
data_path = root + '/test/'
if (not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
img_path = data_path+ str(i) + '.jpg'
io.imsave(img_path, img.numpy())
f.write(img_path + ' ' + str(label) + '\n')
f.close() convert_to_img(True)
convert_to_img(False)

3、原文的这段代码编译会出错,主要是跟下载的数据有关,数据格式不一样,这里还在处理,原因是找到了的,就一个int的转换,下面贴出改过后的代码

出错的地方:

import torch
import re
import numpy
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/" def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
p1 = re.compile(r'[(](.*?)[)]', re.S)
arr = re.findall(p1, words[1])
word = arr[0]
imgs.append((words[0],int(word)))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img,label def __len__(self):
return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)

3、原文的代码,还有一部分也会报错,ERROR如下。

  唉,感叹一下,下次还是看一下语法那些,能读懂了代码再改吧,本想怎个拿来主义的,结果拿来了还是不能运行

  解决-原文地址:https://blog.csdn.net/weixin_43848267/article/details/88874584

  解决:将 loss_return.data[0] 改为 loss_return.data

      还有几个地方 也要将 .data[0] 改为 .data

4、可完整运行的代码

代码1:

import os
from skimage import io
import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/"
train_set = (
mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
)
test_set = (
mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
)
print("training set :",train_set[0].size())
print("test set :",test_set[0].size()) def convert_to_img(train=True):
if(train):
f=open(root+'train.txt','w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
img_path=data_path+str(i)+'.jpg'
io.imsave(img_path,img.numpy())
f.write(img_path+' '+str(label)+'\n')
f.close()
else:
f = open(root + 'test.txt', 'w')
data_path = root + '/test/'
if (not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
img_path = data_path+ str(i) + '.jpg'
io.imsave(img_path, img.numpy())
f.write(img_path + ' ' + str(label) + '\n')
f.close() convert_to_img(True)
convert_to_img(False)

代码2:

import re
import numpy
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/" # -----------------ready the dataset--------------------------
def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split() p1 = re.compile(r'[(](.*?)[)]', re.S)
arr = re.findall(p1, words[1])
word = arr[0] imgs.append((words[0],int(word)))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img,label def __len__(self):
return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64) #-----------------create the Net and training------------------------ class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(64 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
) def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
out = self.dense(res)
return out model = Net()
print(model) optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10):
print('epoch {}'.format(epoch + 1))
# training-----------------------------
train_loss = 0.
train_acc = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = Variable(batch_x), Variable(batch_y)
out = model(batch_x)
loss = loss_func(out, batch_y)
train_loss += loss.item()
pred = torch.max(out, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.item() optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
train_data)), train_acc / (len(train_data)))) # evaluation--------------------------------
model.eval()
eval_loss = 0.
eval_acc = 0.
for batch_x, batch_y in test_loader:
batch_x, batch_y = Variable(batch_x), Variable(batch_y)
out = model(batch_x)
loss = loss_func(out, batch_y)
eval_loss += loss.item()
pred = torch.max(out, 1)[1]
num_correct = (pred == batch_y).sum()
eval_acc += num_correct.item()
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_data)), eval_acc / (len(test_data))))

5、总结

  提示:训练模型有点耗时,这里注意一下

    图片如果过小,标签页里面单独打开图片会大些,排版搞得屁理解一下,一来没时间写文章,二来排版还没学,以后空了就会学。还是先把文章的质量提高了来

  出现的问题主要是因为 torch的版本不同造成的,所以一会我把 我这里的环境贴出来,避免发生同样的错误。

6、环境

  系统:win7 64位

  Python 3.7.3

  各个包的版本号,其它的好像就没啥了

  

可测试代码-版本2

代码1:

#coding=utf-8

import os
from skimage import io
import torchvision.datasets.mnist as mnist root="E:/fashion_mnist/"
train_set = (
mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte'))
)
test_set = (
mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte')),
mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte'))
)
print("training set :",train_set[0].size())
print("test set :",test_set[0].size()) def convert_to_img(train=True):
if(train):
f=open(root+'train.txt','w')
data_path=root+'/train/'
if(not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(train_set[0],train_set[1])):
img_path=data_path+str(i)+'.jpg'
io.imsave(img_path,img.numpy())
f.write(img_path+' '+str(label.numpy())+'\n') # label改为label.numpy()
f.close()
else:
f = open(root + 'test.txt', 'w')
data_path = root + '/test/'
if (not os.path.exists(data_path)):
os.makedirs(data_path)
for i, (img,label) in enumerate(zip(test_set[0],test_set[1])):
img_path = data_path+ str(i) + '.jpg'
io.imsave(img_path, img.numpy())
f.write(img_path + ' ' + str(label.numpy()) + '\n')
f.close() convert_to_img(True)
convert_to_img(False)

代码2:

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/" def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0],int(words[1])))
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img)
return img,label def __len__(self):
return len(self.imgs) train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64) #-----------------create the Net and training------------------------ class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(64, 64, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(64 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
) def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
out = self.dense(res)
return out model = Net()
print(model) optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10):
print('epoch {}'.format(epoch + 1))
# training-----------------------------
train_loss = 0.
train_acc = 0.
for batch_x, batch_y in train_loader:
batch_x, batch_y = Variable(batch_x), Variable(batch_y)
out = model(batch_x)
loss = loss_func(out, batch_y)
train_loss += loss.data
pred = torch.max(out, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.data
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
train_data)), train_acc / (len(train_data)))) # evaluation--------------------------------
model.eval()
eval_loss = 0.
eval_acc = 0.
for batch_x, batch_y in test_loader:
batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
out = model(batch_x)
loss = loss_func(out, batch_y)
eval_loss += loss.data
pred = torch.max(out, 1)[1]
num_correct = (pred == batch_y).sum()
eval_acc += num_correct.data
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_data)), eval_acc / (len(test_data))))

版本2修改的地方

原文:https://blog.csdn.net/shang_jia/article/details/82936074

原文:https://www.liangzl.com/get-article-detail-8524.html

注意:下面的代码不管,下面是第一次测试的时候,下载错了数据集

问题:这里的数据集是数字,不是这个数据集,代码里面是用的fashion-mnist这个数据集

1、下载mnist数据集

  地址:http://yann.lecun.com/exdb/mnist/

  下面这四个都要下载,下载完成后,解压到同一个目录,我是解压到“E:/fashion_mnist/”这个目录里面,好和下面的代码目录一致

  解压完成后,需要修改一下文件名,如(修改原因:保持和下面代码一样,避免出现其它问题):

    修改前:t10k-images.idx3-ubyte

    修改后:t10k-images-idx3-ubyte

  我是第一次弄这玩意,所以尽量弄得白痴些,走弯路很烦,有时候一点点小问题就弄半天,其实就是别人有那么一点没讲清楚,然后就会搞很久

Python 10 训练模型的更多相关文章

  1. Python 10 —— 杂

    Python 10 —— 杂 科学计算 NumPy:数组,数组函数,傅里叶变换 SciPy:依赖于NumPy,提供更多工具,比如绘图 绘图 Matplitlib:依赖于NumPy和Tkinter

  2. python 10大算法之一 LinearRegression 笔记

    简单的线性回归预测房价 #!/usr/bin/env python # encoding: utf-8 """ @version: @author: --*--. @fi ...

  3. Python 10 协程,异步IO,Paramiko

    本节内容 Gevent协程 异步IO Paramiko 携程 协程,又称为微线程,纤程(coroutine).是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文 ...

  4. python 10分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  5. [ Python - 10 ] 练习:批量管理主机工具

    需求: 主机分组 登录后显示主机分组,选择分组后查看主机列表 可批量执行命令.发送文件,结果实时返回 主机用户名密码可以不同 流程图: 说明: ## 需求: 主机分组 登录后显示主机分组,选择分组后查 ...

  6. python 10 动态参数

    目录 1. 函数的动态参数 1.1 动态位置参数(*arges) 1.2 动态关键字参数 (**kwargs) 1.3 万能传参: 2. 函数的注释 3. 名称空间 4. 函数嵌套 5. 函数变量修改 ...

  7. [Advanced Python] 10 - Transfer parameters

    动态库调用 一.Python调用 .so From: Python调用Linux下的动态库(.so) (1) 生成.so:.c to .so lolo@-id:workme$ gcc -Wall -g ...

  8. Python——10模块

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  9. python 10 else EasyGui(转载)

    else语句 if else 要么怎么样,要么不怎么样 while else 干完了能怎样,干不完就不怎样 (异常处理) else 没有问题,就干吧 try: int('a') except Valu ...

随机推荐

  1. Mysql系列(一)—— 基于5.7.22 解压版下载、安装、配置和卸载

    1.下载 从官网中直接获取自己想要的版本: MySQL Community Server 5.7.22 2.解压 将下载到的文件解压缩到自己喜欢的位置. 与mysql 5.6不同的是5.7版本中没有d ...

  2. oc的运行时系统

    Objective-C is a class-based object system. Each object is an instance of some class; the object's i ...

  3. go get 命令

    示例: go get github.com/jinzhu/gorm 下载并安装gorm包. 远程代码库有github,GitLlab,Gogs 命令介绍说明: -fix : 比如,我的代码是一年前1. ...

  4. kubectl rollout回滚和autoscale自动扩容

    系列目录 kubernetes 滚动升级 Kubernetes 中采用ReplicaSet(简称RS)来管理Pod.如果当前集群中的Pod实例数少于目标值,RS 会拉起新的Pod,反之,则根据策略删除 ...

  5. ASP.NET Core应用程序容器化、持续集成与Kubernetes集群部署(一)(转载)

    本文结构 ASP.NET Core应用程序的构建 ASP.NET Core应用程序容器化所需注意的问题 应用程序的配置信息 端口侦听 ASP.NET Core的容器版本 docker镜像构建上下文(B ...

  6. N(C)O(S)I(P)P 2019 退役记

    N(C)O(S)I(P)P 2019 退役记 day-4 今天下午老师突然咕了,于是一下午欢乐时光 今天上午考试T3线段树维护个区间加,区间乘 一遍过编译,一遍过样例(第一次,俺比较弱(虽然也发现和暴 ...

  7. 简单了解Eureka

    1.Eureka简介 Eureka是Spring Cloud Netflix微服务套件中的一部分,是一套成熟的服务注册和发现组件,可以与Springboot构建的微服务很容易的整合起来. Eureka ...

  8. PAT 1008数组元素右移问题

    PAT 1008数组元素右移问题 一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A​0​​A​1​​⋯A​N−1​​)变 ...

  9. js之预解析

    一.所谓的预解析就是:在当前作用域中,JavaScript代码执行之前,浏览器首先会默认的把所有带var和function声明的变量进行提前的声明或者定义. 1)var声明的变量在预解析的时候只是提前 ...

  10. JavaScript 之 Array 对象

    Array 对象 之前已经了解了 Array(数组)的定义和基本操作.数组的基本操作. 下面来学习更多的方法. 检测一个对象是否是数组 instanceof // 看看该变量是否是该对象的实例 Arr ...