洛谷P3964松鼠聚会
题意:求最小的从某一个点到其余点的切比雪夫距离和。
将一个图中的\((x,y)\)坐标转到新坐标\((x+y,x-y)\)后,图中的曼哈顿距离就是新图中的切比雪夫距离,
证明:分类讨论,
1.\(x2>x1,y2>y1时,x2-x1+y2-y1=x2+y2-(x1+y2)\)就是新坐标的X差。
2.\(x2>x1,y2<y1时,x2-x1+y1-y2=x2-y2-(x1-y1)\)就是新坐标的Y差。
其余情况加绝对值。
然后新图中的坐标\((X,Y)\)转回旧坐标后,有\(2x=X+Y,2y=X-Y\)。
然后可以用曼哈顿距离求解。
易得:
\(i\)到各个节点的曼哈顿距离等于\(\sum_{k=1}^{k=n}~(x[k]-x[i])+\sum_{k=1}^{k=n}~(y[k]-y[i])\)在x,y数组递增的情况下。
先处理\(△x\)的情况,
原式=\(x[i]-x[1]+x[i]-x[2]...... + x[i]-x[i] + x[i+1]-x[i]+x[i+2]-x[i]......+x[n]-x[i]\)
=\(i*x[i]-Sum[i]-(n-i)*x[i]+Sum[n]-Sum[i]\)
\(△y\)同理。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
int sumx[1010000], sumy[10010000];
int x[1001000], y[1001000];
int datax[1001000], datay[1001000];
int n, minn = 9223372036854775807;
signed main()
{
scanf("%lld", &n);
for (int i = 1, x1, y1; i <= n; i++)
scanf("%lld%lld", &x1, &y1), x[i] = datax[i] = x1 + y1, y[i] = datay[i] = x1 - y1;
sort(datax + 1, datax + 1 + n);
sort(datay + 1, datay + 1 + n);
for (int i = 1; i <= n; i++)
sumx[i] = sumx[i - 1] + datax[i], sumy[i] = sumy[i - 1] + datay[i];
for (int i = 1; i <= n; i++)
{
int ans = 0;
int idx = lower_bound(datax + 1, datax + 1 + n, x[i]) - datax;
int idy = lower_bound(datay + 1, datay + 1 + n, y[i]) - datay;
// printf("%d %d\n", idx, idy);
ans += idx * datax[idx] - sumx[idx] - (n - idx) * datax[idx] + sumx[n] - sumx[idx];
ans += idy * datay[idy] - sumy[idy] - (n - idy) * datay[idy] + sumy[n] - sumy[idy];
minn = min(minn, ans);
}
printf("%lld", minn / 2);
return 0;
}
洛谷P3964松鼠聚会的更多相关文章
- 洛谷P3964 [TJOI2013]松鼠聚会 [二分答案,前缀和,切比雪夫距离]
题目传送门 松鼠聚会 题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x,y表示, ...
- 洛谷P3964 [TJOI2013]松鼠聚会(坐标系变换)
题面 传送门 题解 对于两个点\((x_i,y_i)\)和\(x_j,y_j\),我们定义它们之间的曼哈顿距离为 \[|x_i-x_j|+|y_i-y_j|\] 定义它们的切比雪夫距离为 \[\max ...
- 洛谷 P1293 班级聚会
P1293 班级聚会 题目描述 毕业25年以后,我们的主人公开始准备同学聚会.打了无数电话后他终于搞到了所有同学的地址.他们有些人仍在本城市,但大多数人分散在其他的城市.不过,他发现一个巧合,所有地址 ...
- 洛谷 P2069 松鼠吃果子
P2069 松鼠吃果子 题目描述 有N个一种松鼠喜欢吃的果子由下向上串排成一列,并标号1,2,...N.一只松鼠从最下果子开始向上跳,并且第i次跳可以一次跳过i*i*i除以5的余数+1个果子(=i*i ...
- 洛谷 P3258 松鼠的新家 题解
题面 貌似这道题暴力加玄学优化就可以AC? 下面是正解: 1.树链剖分: 我们在u到v之间都放一个糖果,可以将松鼠它家u到v的糖果数都加1.每一次将a[i]到a[i+1] (a数组是访问顺序)的节点加 ...
- 洛谷 [P3258] 松鼠的新家
树上差分 对于一条路径 \(u->v\) 来说,设 \(t=LCA(u,v)\) ,d[]为差分数组 ,则有 d[u]++;d[v]++;d[t]--;d[fa[t]]--; 注意:题目中所给的 ...
- 洛谷P4281 紧急集合 / 聚会
LCA 题目要求找离三个点最近的点,我们先看两个点的情况,自然是找LCA,那么三个点的时候是否与LCA有关呢? 显然,离三个点最近的点一定是在这三个点联通的简单路径上. 可以简单证明一下,假设某个点离 ...
- 洛谷P3258 松鼠的新家
树上差分 这应该是一道很简单的树上差分了..就是问每个点被覆盖了多少次. 要注意我们最后dfs后,要把除第一个节点以外的所有点的-1,因为有些点作为起点和终点覆盖了两次,按照题目意思是不用覆盖两次的. ...
- 洛谷P3258松鼠的新家
题目传送门 恩,很明显的一个树剖题,配合树上差分其实也并不难,不过无奈蒟蒻树剖还没那么熟练,而且树上差分也做的少,所以这题愣是做了一中午......唉,果然我还是太菜了.恩,具体做法在代码中解释吧: ...
随机推荐
- Centos Consul集群及Acl配置
一,准备工作 准备四台centos服务器,三台用于consul server 高可用集群,一台用于consul client作服务注册及健康检查.架构如下图所示 二,在四台服务器上安装consul 1 ...
- 大型三甲HIS系统最新C#源码医院信息管理系统NET源码门诊住院医嘱药房药库发药管理源码
查看医疗信息管理his系统演示 本云his系统源码,适用在县乡一体化,医联体分级诊疗项目上,本源码开发语言asp.net c#,数据库sqlserver2012,开发工具vs2015.技术框架mvc. ...
- elasticsearch授权访问
1.search guard插件 https://www.cnblogs.com/shifu204/p/6376683.html 2.Elasticsearch-http-basic 不支持es5,忽 ...
- element-ui DatePicker 日期格式处理
1.使用DatePicker 日期选择器得到的日期格式是这样的 解决方案,添加 value-format="yyyy-MM-dd" <el-date-picker type= ...
- csrf 功能 及 csrf装饰器使用
目录 csrf 功能 及 csrf装饰器使用 简单了解csrf 防范措施 了解更多csrf点击 django 中 csrf csrf装饰器 csrf功能(执行流程) csrf 功能 及 csrf装饰器 ...
- ceph维护命令小结(基于jewel版)
ceph osd pool 操作小计 #列出所有pool root@ceph:~# ceph osd pool ls [detail] #新建pool root@ceph:~# ceph osd po ...
- [ipsec][strongswan]strongswan源码分析--(零)引子
目录 strongswan sa 资料 编译 启动 进程信息 结构 架构图与插件 配置运行 传统配置方法 新的配置方法 其他配置方法 详细的配置文档 配置示例 用法 加密库 libgmp libcry ...
- 基于yum的方式安装Cloudera Manager Agent(使用Mysql 8.0版本)
基于yum的方式安装Cloudera Manager Agent(使用Mysql 8.0版本) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.选择CDH版本 1>.确认 ...
- JS知识图谱
- CentOS7怎样安装Jenkins
参考 http://pkg.jenkins-ci.org/redhat/ wget -O /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.org ...