loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp
题意:有一个栈,随机插入 $n$ 次 $0$/$1$
如果栈顶是 $1$,然后插入 $0$,则将这两个元素都弹出,否则,插入栈顶.
求:$n$ 次操作后栈中期望的元素个数.
我们发现,按照上述弹栈方式进行,栈中元素一定是由若干个连续 $0$ 加上若干个连续 $1$ 组成.
而 $1$ 所在的联通块还在栈顶,所以我们只需考虑 $1$ 的个数即可.
令 $f[i][j]$ 表示 $i$ 次操作过后,栈中有 $j$ 个 $1$ 时期望的元素个数.
由于期望在任何时候都有可加性,所以 $f[i+1][]$ 的期望可以表示成 $f[i][]$ 加上新加入/删掉 $1$ 的期望.
我们令 $p[i][j]$ 表示 $i$ 轮操作后栈中有 $j$ 个 $1$ 的概率,那么有 $\frac{f[i][j]+p[i][j]}{2}\rightarrow f[i+1][j+1]$
因为 $i$ 轮后有 $j$ 个 $1$ 的期望个数是 $f[i][j]$,而下一轮要保证抽到的还是 $1$,所以概率为 $\frac{1}{2}$
即 $f[i][j]\times \frac{1}{2}$ 但是在当前局面增加的长度绝对不是 $\frac{1}{2}$ 因为期望等于概率乘以权值.
而 $i$ 轮后有 $j$ 个 $1$ 的长度的概率是 $p[i][j]$,而下一次还抽到 $1$ 的概率是 $\frac{1}{2}$,权值是 $1$
所以累加的是 $\frac{p[i][j]}{2}$
整理可得 $\frac{f[i][j]+p[i][j]}{2}\rightarrow f[i+1][j+1]$,$\frac{f[i][j]-p[i][j]}{2}\rightarrow f[i+1][j-1]$
这种用概率来转移期望的套路还真是挺巧妙的~
#include <bits/stdc++.h>
#define N 2004
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double p[N][N],f[N][N];
int main()
{
// setIO("input");
int i,j,n;
scanf("%d",&n), p[0][0]=1;
double ans=0.0;
for(i=0;i<n;++i)
{
p[i+1][1]+=p[i][0]/2, f[i+1][1]+=(f[i][0]+p[i][0])/2;
p[i+1][0]+=p[i][0]/2, f[i+1][0]+=(f[i][0]+p[i][0])/2;
for(j=1;j<n;++j)
{
p[i+1][j+1]+=p[i][j]/2, f[i+1][j+1]+=(f[i][j]+p[i][j])/2;
p[i+1][j-1]+=p[i][j]/2, f[i+1][j-1]+=(f[i][j]-p[i][j])/2;
}
}
for(i=0;i<=n;++i) ans+=f[n][i];
printf("%.3f\n",ans);
return 0;
}
loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp的更多相关文章
- LibreOJ #6191. 「美团 CodeM 复赛」配对游戏
二次联通门 : LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 /* LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 概率dp */ #include <cs ...
- 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...
- 【loj6191】「美团 CodeM 复赛」配对游戏
题目 显然期望dp. 简单想法: f[i][j]表示前i个人中向右看并且没有被消除的人数的概率 如果第i+1个人是向右,$f[i+1][j+1]=f[i][j]/2$ 如果第i+1个人是向左,$f[i ...
- LOJ #6192. 「美团 CodeM 复赛」城市网络 (树上倍增)
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB 时间限制:500 ms 标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接 ...
- LibreOJ #6192. 「美团 CodeM 复赛」城市网络
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: sqc 提交提交记录统计讨论测试数据 题目描 ...
- [LOJ 6213]「美团 CodeM 决赛」radar
[LOJ 6213]「美团 CodeM 决赛」radar 题意 给定 \(n\) 个横坐标 \(x_i\) , 为它们选择一个不超过 \(y_i\) 的纵坐标 \(h_i\), 产生 \(c_ih_i ...
- LOJ#6085. 「美团 CodeM 资格赛」优惠券(set)
题意 题目链接 Sol 考虑不合法的情况只有两种: 进去了 再次进去 没进去 但是出来了 显然可以用未知记录抵消掉 直接开个set维护一下所有未知记录的位置 最优策略一定是最后一次操作位置的后继 同时 ...
- 「美团 CodeM 复赛」城市网络
题目链接 题意分析 首先 \([u,v]\)在树上是一条深度递增的链 那么我们可以使用倍增找 \(x\)的祖先当中深度最大的值大于\(x\)的点 然后维护一个\(pre\) 重新建树 这样从\(x\) ...
- loj 6085.「美团 CodeM 资格赛」优惠券
题目: 一个有门禁的大楼,初始时里面没有人. 现在有一些人在进出大楼,每个人都有一个唯一的编号.现在有他们进出大楼的记录,但是有些被污染了,只能知道这里有一条记录,具体并不能知道. 一个人只有进大楼, ...
随机推荐
- golang面对接口
- jwt 0.9.0(三)jwt客户端存储状态可行性分析,及Java代码案例
Jwt客户端存储状态可行性分析 1.前端首次访问后台,后台生成token,放在http header的Authorization里(官网推荐,可解决跨域cookie跨域问题),并且Authorizat ...
- 【1】BIO与NIO、AIO的区别
一.BIO 在JDK1.4出来之前,我们建立网络连接的时候采用BIO模式,需要先在服务端启动一个ServerSocket,然后在客户端启动Socket来对服务端进行通信,默认情况下服务端需要对每个请求 ...
- 获取电脑 ip 地址 及系统
public static void main(String[] args) throws UnknownHostException { //获取电脑系统 结果:os.name:Windows 10 ...
- Hadoop 系列(五)—— Hadoop 集群环境搭建
一.集群规划 这里搭建一个 3 节点的 Hadoop 集群,其中三台主机均部署 DataNode 和 NodeManager 服务,但只有 hadoop001 上部署 NameNode 和 Resou ...
- debug 查询服务日志,用于定位服务在运行和启动过程中出现的问题
vim /usr/lib/systemd/system/sshd.service [Unit] Description=OpenSSH server daemon Documentation=man: ...
- .Net 取树形结构的数据
最近遇到了无限层级数据要读取的问题,所有就写了个. 根据当前所有父级,查询出子级内容 private void GetTypeOfWorkforTree(out List<TypeOfWorkD ...
- Swift枚举的全用法
鉴于昨天开会部门会议讨论的时候,发现有些朋友对枚举的用法还是存在一些疑问,所以就写下这个文章,介绍下Swift下的枚举的用法. 基本的枚举类型 来,二话不说,我们先贴一个最基本的枚举: enum Mo ...
- 如何方便引用自己的python包
有时候想要把一些功能封装成函数然后包装到模块里面最后形成一个包,然后在notebook里面去引用它去处理自己的数据和分析一些有用的部分,比如自己在 之前用到的一个datascience模板就是这样组织 ...
- react-router-dom下的BrowserRouter和HashRouter
奇思妙想的