退役III次后做题记录(扯淡)
退役III次后做题记录(扯淡)
CF607E Cross Sum
计算几何屎题
直接二分一下,算出每条线的位置然后算
注意相对位置这个不能先搞出坐标,直接算角度就行了,不然会卡精度/px
flag:计几题都不写了
CF611G New Year and Cake
真香
双指针扫可行的区间然后维护。
一个三角形的面积可以用\(|AB+BC+CA|\)算,其中\(A,B,C\)是向量\(OA,OB,OC\),\(O\)在三角形外
然后推出的式子可以很好地化简然后维护(为啥我写这么慢啊
CF504E
巨大常数卡过去了 舒服
二分+哈希,然后哈希可以\(O(巨大常数)\)算,要长链剖分算一个\(x\)的\(k\)级祖先
https://codeforc.es/contest/504/submission/63411989
CF506C
二分,然后倒着做,变成一开始有\(n\)个高度为\(mid\)的,每个时刻开始高度全部减\(a_i\),然后选择\(k\)个高度加\(p\)。
考虑限制是啥,正着做的时候一开始是\(h_i\),中间会出现一些\(<0\)的时候很不爽,一开始先给\(h_i\)加上一个数就很爽了,条件就是高度始终\(\ge 0\),倒着做的话另一个条件就是最后的高度满足\(\ge h_i\)
对每个东西维护:如果不再操作,最后的值\(fi\)。如果有\(fi<0\),肯定先做\(fi<0\),有多个先做更早会\(<0\)的
否则随便做一个\(fi_i<h_i\)的,然后可以check了
CF704B
对连通块dp。
AGC028C
答案一定是所有\(A,B\)中选\(n\)个,先拿出所有的升序排序,然后拿出最小的\(n\)个,看是否能取到,如果不能再分情况讨论
(懒得写了
CF521D
求个\(\ln\)后三操作就是加,1,2操作是凸的,可以用一个堆维护
CF536D
每个点到\(s,t\)最短距离后转化为一个坐标,在坐标轴上面dp,前缀和优化
CF547D
这提姆不就是704d吗= =
CF571D
先对每个询问求出最后一次清空的时间就可以忽略清空操作了
搞出重构树,直接在上面操作
CF576D
bitset优化01矩乘
毒瘤= =zbl
CF582D
这题先咕了
CF587D
屎题
抠出每种颜色,显然只能是很多链或者环,分情况讨论亿下,长度为奇数的链还要二分 2sat
CF643D
搞一堆set大模拟,修改点时只用修改父亲
CF521E
加边加到图不是仙人掌时可以找到端点,然后输出方案
CF576E
线段树分治 可以操作到叶子节点之后再放之后的操作
CF582E
设\(f_{i,j}\)表示树上点i,对于所有变量取值的答案压到\(j\),方案数
转移用fwt
CF585E
直接莫反,不算\(1\)的话每对集合和数会算\(-1\)次
CF538H
显然图是个二分图,染色之后同一个连通块同一个颜色缩成一个区间
然后问题就是有很多对区间,取两个位置\(p1,p2\)对于每一对区间正好分别在一个区间内
然后直接枚举左端点,对一对区间可行的右端点还是个区间,线段树维护即可
CF575I
鸽子好神仙啊
先要维护三个东西:
以一个点为右上角的矩形
以一个点向左下的直线和向下的直线围成的图形(直角三角形)
以一个点向右下的直线和向下的直线围成的图形(直角三角形)
然后4个操作都可以用这三个东西容斥出来
CF626G
设\(t\)表示题面中\(l\),\(s\)表示你的方案中每个箱子放的数量。有限制\(\sum s\leq T\)
那么你最终收益期望是\(\sum p_i-\sum \frac{t_ip_i}{t_i+s_i}\)
那么要最小化后面的东西,也就是最大化\(\frac{t_ip_i}{t_i+s_i}\)
一组询问可以用堆维护,然后修改一个\(t_i\)并不会影响其他选取方案的相对顺序
可以证明,给一个\(t_i\)修改\(1\)过后的\(s\)最多只会有一处增加和一处减少
先看给\(t_i\)加1,那么选这个箱子整体会变差,所以策略是可能会拿走一个给别的箱子
如果拿走两个是不可能的,因为原来选了这个箱子收益是\(\frac{t_ip_i}{t_i+s_i}\),后来变成了\(\frac{(t_i+1)p_i}{t_i+s_i+1}\),\(s_i\)减去\(1\)后变成\(\frac{(t_i+1)p_i}{t_i+s_i}\),严格大于原来的收益,既然原来的选了这个肯定不会被换掉
给\(t_i\)减1类似,策略是如果超了先减1然后选这个箱子会变好,可能会从另一个箱子拿一个过来,不过类似上面可证明不会拿两个过来
然后用一个堆维护“插入箱子”和“从箱子拿出”的最大值就行了
退役III次后做题记录(扯淡)的更多相关文章
- 退役IV次后做题记录
退役IV次后做题记录 我啥都不会了.... AGC023 D 如果所有的楼房都在\(S\)同一边可以直接得出答案. 否则考虑最左最右两边的票数,如果左边>=右边,那么最右边会投给左边,因为就算车 ...
- 退役II次后做题记录
退役II次后做题记录 感觉没啥好更的,咕. atcoder1219 历史研究 回滚莫队. [六省联考2017]组合数问题 我是傻逼 按照组合意义等价于\(nk\)个物品,选的物品\(\mod k\) ...
- Sam做题记录
Sam做题记录 Hihocoder 后缀自动机二·重复旋律5 求一个串中本质不同的子串数 显然,答案是 \(\sum len[i]-len[fa[i]]\) Hihocoder 后缀自动机三·重复旋律 ...
- FJOI2017前做题记录
FJOI2017前做题记录 2017-04-15 [ZJOI2017] 树状数组 问题转化后,变成区间随机将一个数异或一,询问两个位置的值相等的概率.(注意特判询问有一个区间的左端点为1的情况,因为题 ...
- UOJ 做题记录
UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...
- project euler做题记录
ProjectEuler_做题记录 简单记录一下. problem 441 The inverse summation of coprime couples 神仙题.考虑答案为: \[\begin{a ...
- BJOI做题记录
BJOI做题记录 终于想起还要做一下历年省选题了2333 然而咕了的还是比做了的多2333 LOJ #2178. 「BJOI2017」机动训练 咕了. LOJ #2179. 「BJOI2017」树的难 ...
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...
- noip做题记录+挑战一句话题解?
因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...
随机推荐
- 1-python运算符和逻辑控制语句
目录 运算符 条件语句if…else 断言assert 循环语句while 遍历for循环 1.运算符 1.1.算数运算符 加+.减-.乘*.除/.余%.次方**.向下取整除// 1.2.赋值运算符 ...
- C# 查看系统进程
//使用前需要引用 using System.Diagnostics; var processList = Process.GetProcesses().ToList();
- Python 之 计算psnr和ssim值
基于python版的PSNR和ssim值计算 总所周知,图像质量评价的常用指标有PSNR和SSIM等,本博文是基于python版的图像numpy的float64格式和uint8格式计算两种指标值(附代 ...
- 使用代码获得Hybris Commerce里显示的产品图片
使用下面这个API去取Hybris Commerce系统里产品主数据的明细信息: https://:9002/rest/v2/electronics/products/300938?fields=FU ...
- MySQL用户及权限
1. MySQL根据对象级别划分的权限类别: 常见的权限类别:库级别.表级别.字段级别.管理类权限.程序类权限 管理类权限: CREATE TEMPORARY TABLES 创建临时表,一般为16M; ...
- 浅析ORACLE ERP系统维护方法
笔者曾从事ORACLE ERP系统客户服务工作多年,在ERP系统维护工作中,深深体会到:ERP的系统维护工作看似平常,实则大有学问. ORACLE ERP系统是一个大型集成的软件系统,是一个企业全面共 ...
- “GIS DICTIONARY A-Z” 查询页面开发(3)—— 基础知识之服务器、IP地址、域名、DNS、端口以及Web程序的访问流程
今天补一补基础知识: 一.服务器:能够提供服务的机器,取决于机器上安装的软件(服务软件).服务器响应服务请求,并进行处理. Web服务器:提供Web服务,即网站访问.常见Web服务软件:Apache( ...
- git设置本地账户
问题描述: git很方便,git本地如果记住账户信息 问题解决: vscode Git 全局设置: git config --global user.name "mvpbang" ...
- prometheus学习系列八: Prometheus Grafana展示平台
在prometheus中,我们可以使用web页面进行数据的查询和展示, 不过展示效果不太理想,这里使用一款专业的展示平台进行展示. grafana安装 # 下载wget https://dl.graf ...
- FRP 中文文档
https://github.com/fatedier/frp/blob/master/README_zh.md README | 中文文档 frp 是一个可用于内网穿透的高性能的反向代理应用,支持 ...