celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)
一、celery简介:
Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。

可以看到,Celery 主要包含以下几个模块:
任务模块 Task
包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列。
消息中间件 Broker
Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。
任务执行单元 Worker
Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它。
任务结果存储 Backend
Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, redis 和 MongoDB 等。
所以总结一下celery:它是一个处理大量消息的分布式系统,能异步任务、定时任务,使用场景一般用于耗时操作的多任务或者定时性的任务
二、celery安装与使用
pycharm安装:
pip3 install celery
初步使用:(创建一个Python项目)
① 实例化一个celery对象,使用该对象.task装饰需要管理的任务函数:
# celery_task.py from celery import Celery """
# 如果redis没有设置密码
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
"""
broker = 'redis://:12345@127.0.0.1:6379/1'
backend = 'redis://:12345@127.0.0.1:6379/2'
# c1是实例化产生的celery的名字,因为会存在多个celery
app = Celery('c1', broker=broker, backend=backend) # 需要使用一个装饰器,来管理该任务(函数)
@app.task
def add(x, y):
import time
time.sleep(1)
return x + y
② 将装饰的任务函数条件到消息队列中,此时提交的任务函数并没有执行,只是提交到worker,它会返回一个标识任务的字符串
# submit.task.py # 用于提交任务
from celery_task import add
# 提交任务到消息队列中,这里只是将任务提交,并没有执行 res = add. delay(3, 8)
print(res)
# 结果是标识任务的字符串(id号)
# 7811a028-428c-4dd5-9135-788e26e694a7
③ 使用命令启动worker去刚才提交的执行任务
linux: celery worker -A celery_task -l info
windows下:celery worker -A celery_task -l info -P eventlet
④ 查看结果,根据提交任务返回的字符串去查询
# check_res.py from celery.result import AsyncResult
from celery_task import app async = AsyncResult(id='bd600820-9366-4220-a679-3e435ae91e71', app=app) if async.successful():
result = async.get()
print(result) elif async.failed():
print('执行失败') elif async.status == 'PENDING':
print('任务等待中') elif async.status == 'RETRY':
print('任务异常后重试') elif async.status == 'STARTED':
print('任务正在执行')

celery简单使用流程:
-celery的使用
-pip3 install celery
-写一个py文件:celery_task
-1 指定broker(消息中间件),指定backend(结果存储)
-2 实例化产生一个Celery对象 app=Celery('名字',broker,backend)
-3 加装饰器绑定任务,在函数(add)上加装饰器app.task
-4 其他程序提交任务,先导入add,add.delay(参,参数),会将该函数提交到消息中间件,但是并不会执行,有个返回值,直接print会打印出任务的id,以后用id去查询任务是否执行完成
-5 启动worker去执行任务:
linux: celery worker -A celery_task_s1 -l info
windows下:celery worker -A celery_task_s1 -l info -P eventlet
-6 查看结果:根据id去查询
async = AsyncResult(id="bd600820-9366-4220-a679-3e435ae91e71", app=app)
if async.successful():
#取出它return的值
result = async.get()
print(result)
celery的多任务
# celery的多任务结构
-项目结构:
pro_cel
├── celery_task# celery相关文件夹
│ ├── celery.py # celery连接和配置相关文件,必须叫这个名字
│ └── tasks1.py # 所有任务函数
│ └── tasks2.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务
-启动worker,celery_task是包的名字
celery worker -A celery_task -l info -P eventlet
按照多任务文件结构创建文件:

注意celery.py这个文件的文件名是固定的,不能改,task_1和task_2可以自己定义,他俩代表自定义的任务分类,还可以再创建task_3。。。等其它名字的任务文件,send_task.py是提交任务到worker,check_result.py是查看结果的
# celery.py from celery import Celery
broker = 'redis://:12345@127.0.0.1:6379/1'
backend = 'redis://:12345@127.0.0.1:6379/2'
# c1是实例化产生的celery的名字,因为会存在多个celery
app = Celery('c1', broker=broker, backend=backend,
# 包含一些2个任务文件,去相应的py文件找任务,对多个任务进行分类
include=[
'celery_task.task_1',
'celery_task.task_2',
]) # celery提供一些配置,具体可查看官方文档
# app.conf.timezone = 'Asia/Shanghai'
在send_task.py种右键运行,提交任务到worker(这里打印了提交的2个任务的id)
# task_1.py
from celery_task.celery import app @app.task
def add1(x, y):
import time
time.sleep(0.5)
return x + y # task_2.py
from celery_task.celery import app @app.task
def add2(x, y):
import time
time.sleep(1)
return x * y
# send_task.py
from celery_task.task_1 import add1
from celery_task.task_2 import add2 res1 = add1.delay(3, 8)
print(res1) # 16e847f3-fc14-4391-89e2-e2b3546872cf res2 = add2.delay(4, 9)
print(res2) # 858c0ae5-8516-4473-8be5-7501fb856ff4
启动worker,celery_task是包的名字
celery worker -A celery_task -l info -P eventlet

然后将打印的2个id在check_result.py中进行查询结果
# check_reslut.py
from celery.result import AsyncResult
from celery_task.celery import app for i in ['16e847f3-fc14-4391-89e2-e2b3546872cf', '858c0ae5-8516-4473-8be5-7501fb856ff4']:
async = AsyncResult(id=i, app=app)
if async.successful():
result = async.get()
print(result) elif async.failed():
print('执行失败') elif async.status == 'PENDING':
print('任务等待中') elif async.status == 'RETRY':
print('任务异常后重试') elif async.status == 'STARTED':
print('任务正在执行')

celery的定时任务
方式一:执行时间在年月日时分秒
在提交任务的地方修改:
# send_task.py from celery_task.task_1 import add1
from celery_task.task_2 import add2
# 执行定时任务,3s以后执行add1、add2任务
from datetime import datetime
# 设置任务执行时间2019年7月12日21点45分12秒
v1 = datetime(2019, 7, 12, 21, 48, 12)
print(v1) # 2019-07-12 21:45:12
# 将v1时间转成utc时间
v2 = datetime.utcfromtimestamp(v1.timestamp())
print(v2) # 2019-07-12 13:45:12
# 取出要执行任务的时间对象,调用apply_async方法,args是任务函数传的参数,eta是执行的时间
result1 = add1.apply_async(args=[3, 8], eta=v2)
result2 = add2.apply_async(args=[4, 9], eta=v2)
print(result1.id)
print(result2.id)
方式二:通过延迟执行的时间算出执行的具体utc时间,与方式一基本相同
在提交任务的地方修改:
# send_task.py # 方式二:实际上和方法一类似,多了一个延迟时间,也就是用现在时间和推迟执行的时间计算出任务执行的最终utc时间
# 然后也是调用apply_async方法。
from datetime import datetime
ctime = datetime.now()
# 默认使用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
# 使用timedelta模块,拿到10秒后的时间对象,这里参数可以传秒、毫秒、微秒、分、小时、周、天
time_delay = timedelta(seconds=10)
# 得到任务运行时间:
task_time = utc_ctime + time_delay
result1 = add1.apply_async(args=[3, 8], eta=task_time)
result2 = add2.apply_async(args=[4, 9], eta=task_time)
print(result1.id)
print(result2.id)
celery的计划任务
计划任务需要在celery.py中添加代码,然后需要beat一下,才能将计划开启
# celery.py中 from celery import Celery
broker = 'redis://:12345@127.0.0.1:6379/1'
backend = 'redis://:12345@127.0.0.1:6379/2'
# c1是实例化产生的celery的名字,因为会存在多个celery
app = Celery('c1', broker=broker, backend=backend,
# 包含一些2个任务文件,去相应的py文件找任务,对多个任务进行分类
include=[
'celery_task.task_1',
'celery_task.task_2',
'celery_task.task_3',
]) # celery提供一些配置,具体可查看官方文档
# app.conf.timezone = "Asia/Shanghai"
# app.conf.enable_utc = True # 计划任务
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
'submit_every_2_seconds': {
# 计划的任务执行函数
'task': 'celery_task.task_1.add1',
# 每个2秒执行一次
'schedule': timedelta(seconds=2),
# 传递的任务函数参数
'args': (3, 9)
},
'submit_every_3_seconds': {
# 计划的任务执行函数
'task': 'celery_task.task_2.add2',
# 每个3秒执行一次
'schedule': timedelta(seconds=3),
# 传递的任务函数参数
'args': (4, 7)
},
'submit_in_fix_datetime': {
'task': 'celery_task.task_3.add3',
# 比如每年的7月13日10点53分执行
# 注意:默认使用utc时间,当前的时间中的小时必须要-8个小时才会到点提交
'schedule': crontab(minute=53, hour=2, day_of_month=13, month_of_year=7), '''
# 如果不想-8,可以先设置时区,再按正常时间设置
app.conf.timezone = "Asia/Shanghai"
app.conf.enable_utc = True
'''
'args': ('Hello World',)
} } # 上面写完后,需要起一个进程,启动计划任务
# celery beat -A celery_task -l info # 启动worker:
# celery worker -A celery_task -l info -P eventlet
Django中使用celery
django-celery:由于djang-celery模块对版本的要求过于严格,而且容易出现很多bug,所以不建议使用
直接使用celery多任务结构的,将celery多任务结构的代码文件夹celery_task拷贝到Django项目中,然后在视图函数中进行任务提交、然后进行结构查看。(启动项目时候记得将worker启动起来,注意启动路径要跟你拷贝的celery_task文件同级)
注意:当我们在Django项目中使用celery,在celery的任务函数中不能直接调用django的环境(比如orm方法查询数据库),需要添加代码调用Django环境
在Python脚本中调用Django环境
import os
# 加载Django环境,bbs是所在的Django项目名称
os.environ.setdefault("DJANGO_SETTINGS_MODULE", 'bbs.settings')
# 引入Django模块
import django
# 初始化Django环境
django.setup()
# 从app当中导入models
from app01 import models
# 调用操作,拿到数据库中的所有Book数据对象
books = models.Books.objects.all()
celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)的更多相关文章
- Celery分布式异步任务框架
一.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统.专注于实时处理的异步任务队列,同时也支持定时任务 二.Celery架构 1.Celery的架构由三部分组成: 消 ...
- celery 分布式异步队列框架使用方法
简介: Celery 是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向broker传递消息,然后celery ...
- celery分布式异步框架
1.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组成,消息中间件( ...
- Python开发【模块】:Celery 分布式异步消息任务队列
Celery 前言: Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个 ...
- 安装 rabbitmq ,通过生成器获取redis列表数据 与 Celery 分布式异步队列
一.安装rabbitmq @全体成员 超简易安装rabbitmq文档 1.安装配置epel源rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/ ...
- Django项目中使用celery做异步任务
异步任务介绍 在写项目过程中经常会遇到一些耗时的任务, 比如:发送邮件.发送短信等等~.这些操作如果都同步执行耗时长对用户体验不友好,在这种情况下就可以把任务放在后台异步执行 celery就是用于处理 ...
- 异步任务利器Celery(二)在django项目中使用Celery
Celery 4.0支持django1.8及以上的版本,低于1.8的项目使用Celery 3.1. 一个django项目的组织如下: - proj/ - manage.py - proj/ - __i ...
- 一个Django项目中实现的简单HTML页面布局
1 - 基础页面(被继承的模板) {% load static %} <!DOCTYPE html> <html lang="en"> <head&g ...
- Django配置celery执行异步任务和定时任务
原生celery,非djcelery模块,所有演示均基于Django2.0 celery是一个基于python开发的简单.灵活且可靠的分布式任务队列框架,支持使用任务队列的方式在分布式的机器/进程/线 ...
随机推荐
- haproxy2.0 dataplaneapi 简单说明
haproxy2.0 支持基于dataplaneapi 的haproxy 动态配置修改以及服务生效,早期大家为了动态 可以会基于dsn 的服务发现模式,基于confd 结合consul 动态生成配置并 ...
- springboot与ssm的差异性
springboot简化了ssm的配置 将外部jar包改为内部pom.xml文件配置 同时 使用了多种注解来进行注解式的开发 [图1:springboot的一些依赖模块] 通过原springmvc机制 ...
- 【转】Android Fastboot 与 Recovery 和刷机
1. 首先来看下Android系统的分区: Android系统的分区.jpg Android分区解释.png 安卓系统一般把rom芯片分成7个区,如果再加上内置sd卡这个分区,就是8个: hb ...
- Transform the vot dataset into 4 corner format
Transform the vot dataset into 4 corner format Matlab code to change the 8 value ground truth into 4 ...
- spring容器干掉if-else
场景说明 最近新做一个项目,需要对不同店铺的商品做不同处理.例如storeA需要进行handleA操作,storeB需要进行handleB操作,如此类推 大家很容易会想到下面的实现方法 public ...
- 【laravel5.5+Passport】laravel5的前后端分离之Passport设计
项目中使用到了laravel5的passport组件,进行前后端分离的 api认证部分: 前后端分离的api认证,我们用的是: [密码授权令牌],需要用户登录->指定client_id/clie ...
- java 把 PEM 格式的公钥证书转换为 X.509 格式的证书
代码: @UtilityClass public final class X509Certs { private static final CertificateFactory CERTIFICATE ...
- 往hbase插入数据,你会选择哪种?
好久,好久没有写个博客了,自从上次封闭开始,到“自闭”,有了一段时间了,哈哈^_^ . 多亏了云桌面的歇菜, 一下午啥都干不了, 突然想到,好久没有写点啥了,就写的,让时间流走有点痕迹吧 _(:з」∠ ...
- RockBrain USB Server外设虚拟化高可用解决方案(银企直联虚拟化解决方案)
技术指标: 单.双千兆网络界面(支持链路冗余与链路热备.支持双网口均衡负载) 原生USB2.0接口(USB2.0与USB3.0接口均对所有USB版本设备兼容,支持混插) 技术优势: RockBrain ...
- react 核心技术点
1.react生命周期 react生命周期分为初始化阶段.运行阶段.销毁阶段. (1) 初始化阶段: componentWillMount:实例挂载之前 Render:渲染组件 componentDi ...