一、导入必要的工具包
# 运行 xgboost安装包中的示例程序
from xgboost import XGBClassifier

# 加载LibSVM格式数据模块
from sklearn.datasets import load_svmlight_file
from sklearn.metrics import accuracy_score

from matplotlib import pyplot
二、数据读取
scikit-learn支持多种格式的数据,包括LibSVM格式数据
XGBoost可以加载libsvm格式的文本数据,libsvm的文件格式(稀疏特征)如下:
1  101:1.2 102:0.03
0  1:2.1 10001:300 10002:400
...
每一行表示一个样本,第一行的开头的“1”是样本的标签。“101”和“102”为特征索引,'1.2'和'0.03' 为特征的值。
在两类分类中,用“1”表示正样本,用“0” 表示负样本。也支持[0,1]表示概率用来做标签,表示为正样本的概率。
下面的示例数据需要我们通过一些蘑菇的若干属性判断这个品种是否有毒。
UCI数据描述:http://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/ ,
每个样本描述了蘑菇的22个属性,比如形状、气味等等(加工成libsvm格式后变成了126维特征),
然后给出了这个蘑菇是否可食用。其中6513个样本做训练,1611个样本做测试。

数据下载地址:http://download.csdn.net/download/u011630575/10266113

# read in data,数据在xgboost安装的路径下的demo目录,现在copy到代码目录下的data目录
my_workpath = './data/'
X_train,y_train = load_svmlight_file(my_workpath + 'agaricus.txt.train')
X_test,y_test = load_svmlight_file(my_workpath + 'agaricus.txt.test')

print(X_train.shape)
print (X_test.shape)
三、训练参数设置

max_depth: 树的最大深度。缺省值为6,取值范围为:[1,∞]
eta:为了防止过拟合,更新过程中用到的收缩步长。在每次提升计算之后,算法会直接获得新特征的权重。
eta通过缩减特征的权重使提升计算过程更加保守。缺省值为0.3,取值范围为:[0,1]
silent:取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。缺省值为0
objective: 定义学习任务及相应的学习目标,“binary:logistic” 表示二分类的逻辑回归问题,输出为概率。

其他参数取默认值。
四、训练模型

# 设置boosting迭代计算次数
num_round = 2

bst =XGBClassifier(max_depth=2, learning_rate=1, n_estimators=num_round, 
                   silent=True, objective='binary:logistic') #sklearn api

bst.fit(X_train, y_train)
XGBoost预测的输出是概率。这里蘑菇分类是一个二类分类问题,输出值是样本为第一类的概率。
我们需要将概率值转换为0或1。

train_preds = bst.predict(X_train)
train_predictions = [round(value) for value in train_preds]

train_accuracy = accuracy_score(y_train, train_predictions)
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))
五、测试

模型训练好后,可以用训练好的模型对测试数据进行预测
XGBoost预测的输出是概率,输出值是样本为第一类的概率。我们需要将概率值转换为0或1。

# make prediction
preds = bst.predict(X_test)
predictions = [round(value) for value in preds]

test_accuracy = accuracy_score(y_test, predictions)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
六、代码整理

# coding:utf-8
# 运行 xgboost安装包中的示例程序
from xgboost import XGBClassifier

# 加载LibSVM格式数据模块
from sklearn.datasets import load_svmlight_file
from sklearn.metrics import accuracy_score

from matplotlib import pyplot

# read in data,数据在xgboost安装的路径下的demo目录,现在copy到代码目录下的data目录
my_workpath = './data/'
X_train,y_train = load_svmlight_file(my_workpath + 'agaricus.txt.train')
X_test,y_test = load_svmlight_file(my_workpath + 'agaricus.txt.test')

print(X_train.shape)
print(X_test.shape)

# 设置boosting迭代计算次数
num_round = 2

#bst = XGBClassifier(**params)
#bst = XGBClassifier()
bst =XGBClassifier(max_depth=2, learning_rate=1, n_estimators=num_round,
silent=True, objective='binary:logistic')

bst.fit(X_train, y_train)

train_preds = bst.predict(X_train)
train_predictions = [round(value) for value in train_preds]

train_accuracy = accuracy_score(y_train, train_predictions)
print ("Train Accuary: %.2f%%" % (train_accuracy * 100.0))

# make prediction
preds = bst.predict(X_test)
predictions = [round(value) for value in preds]

test_accuracy = accuracy_score(y_test, predictions)
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
---------------------
作者:鹤鹤有明
来源:CSDN
原文:https://blog.csdn.net/u011630575/article/details/79421053
版权声明:本文为博主原创文章,转载请附上博文链接!

XGBoost使用教程(与sklearn一起使用)二的更多相关文章

  1. CG基础教程-陈惟老师十二讲笔记

    转自 麽洋TinyOcean:http://www.douban.com/people/Tinyocean/notes?start=50&type=note 因为看了陈惟十二讲视频没有课件,边 ...

  2. JSTL标签库的基本教程之核心标签库(二)

    JSTL标签库的基本教程之核心标签库(二) 核心标签库 标签 描述 <c:out> 用于在JSP中显示数据,就像<%= ... > <c:set> 用于保存数据 & ...

  3. Elasticsearch入门教程(六):Elasticsearch查询(二)

    原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  4. XGBoost使用教程(纯xgboost方法)一

    一.导入必要的工具包# 导入必要的工具包import xgboost as xgb # 计算分类正确率from sklearn.metrics import accuracy_score二.数据读取X ...

  5. XGBoost使用教程(进阶篇)三

    一.Importing all the libraries import pandas as pdimport numpy as npfrom matplotlib import pyplot as ...

  6. Android快乐贪吃蛇游戏实战项目开发教程-03虚拟方向键(二)绘制一个三角形

    该系列教程概述与目录:http://www.cnblogs.com/chengyujia/p/5787111.html 一.绘制三角形 在上一篇文章中,我们已经新建了虚拟方向键的自定义控件Direct ...

  7. 《C#图解教程》读书笔记之二:存储、类型和变量

    本篇已收录至<C#图解教程>读书笔记目录贴,点击访问该目录可获取更多内容. 一.类型初窥:掀起你的盖头来 (1)C程序是一组函数和数据类型,C++程序是一组函数和类,而C#程序是一组类型声 ...

  8. xgboost算法教程(两种使用方法)

    标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...

  9. sklearn常见分类器(二分类模板)

    # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplotlib.rcParams['font.sans-serif'] ...

随机推荐

  1. 使用dva 的思考的一个问题,数组复制的必要

    *getTags({ payload }, { call, put }) { const response = yield call(getTags, payload); const arr = re ...

  2. Node.js 入门篇

    Node.js 使用C++开发的. Node.js是一个事件驱动服务端JavaScript环境,只要能够安装相应的模块包,就可以开发出需要的服务端程序,如HTTP服务端程序.Socket程序等. No ...

  3. [LeetCode] 662. Maximum Width of Binary Tree 二叉树的最大宽度

    Given a binary tree, write a function to get the maximum width of the given tree. The width of a tre ...

  4. [LeetCode] 477. Total Hamming Distance 全部汉明距离

    The Hamming distance between two integers is the number of positions at which the corresponding bits ...

  5. CPU、内存、磁盘的瓶颈(转载文)

    1.如何判断CPU.内存.磁盘的瓶颈? CPU瓶颈1) 查看CPU利用率.建议CPU指标如下 a) User Time:65%-70% b) System Time:30%-35% c) Idle:0 ...

  6. 推荐一款移动端小视频App玲珑视频

    推荐一款移动端小视频App玲珑视频 一 应用描述 玲珑小视频,边看边聊![海量视频,刷个不停,还能找妹子语音聊天哦][随手拍一拍,记录美好生活,还能拿金币哦][看视频领金币.登录领金币.拍视频领金币. ...

  7. PS:老权限登录Action 中 WebObjManager有问题,一直登录不起问题

    .ashx后面代码要多继承一个, IRequiresSessionState接口

  8. SpringBoot之CommandLineRunner接口和ApplicationRunner接口

    我们在开发中可能会有这样的情景.需要在容器启动的时候执行一些内容.比如读取配置文件,数据库连接之类的.SpringBoot给我们提供了两个接口来帮助我们实现这种需求.这两个接口分别为CommandLi ...

  9. Java8 新特性 Steam() 中间有状态操作

    中间有状态操作 Java8 新特性 Stream 练习实例   中间操作,就是把数据处理成自己想要的类型,并且有状态操作,是在所有的数据基础上进行操作的.比如dictinct(去重),sorted(排 ...

  10. 改写URL的查询字符串QUERY_STRING[URL重定向问号问题](转)

    查询字符串是指URL请求中"问号"后面的部分.比如,http://mysite/?foo=bar 中粗体部分就是查询字符串,其中变量名是foo,值是bar. 'last|L' (最 ...