又是计算几何,我感觉最近对计算几何上瘾了。

当然,工作上也会用一些,不过工作上一般直接调用boost的geometry库。

上次写过最小包围圆,这次是最小包围矩形,要比最小包围圆复杂些。

最小包围矩形可不一定是个直立的矩形,也可能像下图一样是倾斜的。

求法如下:

1.求多边形凸包,这里凸包直接调用系统函数了,细节可以参考这里,虽然当时写的不怎么样。

2.将凸包两个相邻的点连线作为矩形一条边。

3.寻找凸包上距离已得到的边最远的点,过该点做平行线,得到矩形第二条边。

4.将凸包上点向已求得的边投影,求得投影点相距最远的两个点,过该两点做直线,作为矩形另外两条边。

5.遍历凸包所有相邻两点从新运行2~4,将面积最小的矩形作为求得结果。

通常情况下,矩形会过随机点中的5个点。

结果如下:

matlab代码如下:

clear all;close all;clc;

n=;
p=rand(n,); ind=convhull(p(:,),p(:,));
l=length(ind); hull=p(ind,:); %随机点凸包 area=inf;
for i=:l
p1=hull(i-,:); %凸包上两个点
p2=hull(i,:); k1=(p1()-p2())/(p1()-p2()); %连接两点的直线,作为矩形的一条边
b1=p1()-k1*p1(); d=abs(hull(:,)*k1-hull(:,)+b1)/sqrt(k1^+); %所有凸包上的点到k1,b1直线的距离 [h ind]=max(d); %得到距离最大的点距离,即为高,同时得到该点坐标
b2=hull(ind,)-k1*hull(ind,); %相对k1,b1直线相对的另一条平行边k1,b2; k2=-/k1; %以求得的直线的垂线斜率 b=hull(:,)-k2*hull(:,); %过凸包所有点构成的k2,b直线系
x1=-(b1-b)/(k1-k2); %凸包上所有点在已求得的第一条边的投影
y1=-(-b*k1+b1*k2)/(k1-k2); x2=-(b2-b)/(k1-k2); %凸包上所有点在已求得的第二条边的投影
y2=-(-b*k1+b2*k2)/(k1-k2); [junk indmax1]=max(x1); %投影在第一条边上x方向最大与最小值
[junk indmin1]=min(x1); [junk indmax2]=max(x2); %投影在第二条边上x方向最大与最小值
[junk indmin2]=min(x2); w=sqrt((x1(indmax1)-x1(indmin1))^+(y1(indmax1)-y1(indmin1))^); %矩形的宽 if area>=h*w %使面积最小
area=h*w;
pbar=[x1(indmax1) y1(indmax1); %矩形四个角点
x2(indmax2) y2(indmax2);
x2(indmin2) y2(indmin2);
x1(indmin1) y1(indmin1)];
end
end
pbar(,:)=pbar(,:); hold on;
plot(p(:,),p(:,),'.');
plot(pbar(:,),pbar(:,),'r')
axis equal;

matlab练习程序(最小包围矩形)的更多相关文章

  1. opencv3寻找最小包围矩形在图像中的应用-滚动条

    #include<opencv2/opencv.hpp> #include<iostream> #include<vector> using namespace c ...

  2. matlab练习程序(Ritter‘s最小包围圆)

    原始算法是sphere,我这里简化为circle了. Ritter's求最小包围圆为线性算法,因为非常简单,所以应用非常广泛. 该算法求出的圆比最优圆大概会大个5%到20%左右,求最优圆应该可以用Bo ...

  3. UVA10173 Smallest Bounding Rectangle 最小面积矩形覆盖

    \(\color{#0066ff}{题目描述}\) 给定n(>0)二维点的笛卡尔坐标,编写一个程序,计算其最小边界矩形的面积(包含所有给定点的最小矩形). 输入文件可以包含多个测试样例.每个测试 ...

  4. WPF程序最小化到任务通知栏

    我们通常使用的桌面软件,都可以最小化到任务通知栏,并且可以从任务通知栏再打开当前软件,或者通过软件的快捷方式从任务通知栏呼出. 我们可以通过下面的方式把WPF程序最小化到任务栏.由于WPF并没有实现N ...

  5. matlab练习程序(SUSAN检测)

    matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...

  6. opencv学习之路(26)、轮廓查找与绘制(五)——最小外接矩形

    一.简介 二.轮廓最小外接矩形的绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //轮廓最小外 ...

  7. windows vbs启动多个应用程序并使程序最小化(显示桌面)

      windows vbs启动多个应用程序并使程序最小化(显示桌面) CreationTime--2018年7月26日11点18分 Author:Marydon 1.应用场景 每天开机后,都需要打开平 ...

  8. (转)matlab练习程序(HOG方向梯度直方图)

    matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...

  9. C# 设置程序最小化到任务栏右下角,鼠标左键单击还原,右键提示关闭程序

    首先设置程序最小化到任务栏右下角 先给窗口添加一个notifyIcon控件 为notifyIcon控件设置ICO图标(不设置图标将无法在任务栏显示) 给notifyIcon控件添加点击事件 然后是最小 ...

随机推荐

  1. xss跨站攻击测试代码

    '><script>alert(document.cookie)</script> ='><script>alert(document.cookie)& ...

  2. Iterator&Vector应用实例

    public class test1 { /** * @param args */ public static void main(String[] args) { // TODO Auto-gene ...

  3. Linux 下安装配置 JDK7

    Linux 下安装配置 JDK7 配置环境(debian 7) 自从从Oracle收购Sun近三年来,已经有很多变化.早在8月,甲骨文将“Operating System Distributor Li ...

  4. ngrok反向代理

    关于ngrok ngrok 是一个反向代理,通过在公共的端点和本地运行的 Web 服务器之间建立一个安全的通道.ngrok 可捕获和分析所有通道上的流量,便于后期分析和重放. 为什么使用ngrok? ...

  5. sqlplus 配置方法及相关命令

    sqlplus 配置方法及相关命令 1.配置文件 1.1 全局模式什么叫全局模式呢:当我们配置完sqlplus工具加载配置文件后,无论在哪个目录下登陆数据库,您设置[sqlplus提示符样子,在任何目 ...

  6. webexam项目杂记

    sql 语句 数据库 本身 有数据类型的区分,对于mysql的字符串默认的用单引号''来表示,因此,整个sql 语句就要用双引号来括. 如: $sql = "SELECT * FROM us ...

  7. 反正切函数求圆周率 atan

    #define PI atan(1.0)*4 原理:tan ∏/4=1; atan2: 返回给定的 X 及 Y 坐标值的反正切值.反正切的角度值等于 X 轴正方向与通过原点和给定坐标点 (Y坐标, X ...

  8. [ruby on rails] 跟我学之(3)基于rails console的查增删改操作

    本章节展开对model的介绍:包括查增删改操作.紧接着上面一节<[ruby on rails] 跟我学之HelloWorld> 创建模型 使用命令创建模型 创建表post,默认自带两栏位 ...

  9. Encode and Decode Strings

    Design an algorithm to encode a list of strings to a string. The encoded string is then sent over th ...

  10. Copy List with Random Pointer

    A linked list is given such that each node contains an additional random pointer which could point t ...