特征向量-Eigenvalues_and_eigenvectors#Graphs
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation
- T ( v ) = λ v , {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}
where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.
If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation
- A v = λ v . {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}
There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
特征向量-Eigenvalues_and_eigenvectors#Graphs的更多相关文章
- 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...
- 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...
- 论文解读《The Emerging Field of Signal Processing on Graphs》
感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...
- 论文解读(AutoSSL)《Automated Self-Supervised Learning for Graphs》
论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao ...
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao L ...
- 论文阅读 Inductive Representation Learning on Temporal Graphs
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时 ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- PCA 协方差矩阵特征向量的计算
人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...
随机推荐
- hdu 1281 二分图匹配
题目:在保证尽量多的“车”的前提下,棋盘里有些格子是可以避开的,也就是说,不在这些格子上放车,也可以保证尽量多的“车”被放下.但是某些格子若不放子,就 无法保证放尽量多的“车”,这样的格子被称做重要点 ...
- ER-STUDIO 6.5工具使用帮助的中文翻译
转自于:http://yujingwang.blog.sohu.com/63362979.html 1 资料 ER-STUDIO的帮助(英文) 2 内容 2.1 ...
- 2016"百度之星" - 初赛(Astar Round2A)
题目链接: http://bestcoder.hdu.edu.cn/contests/contest_show.php?cid=701 1001 : 矩阵快速幂 #include <iostre ...
- Android loading进度条使用简单总结
在这里,总结一下loading进度条的使用简单总结一下. 一.说起进度条,必须说说条形进度条,经常都会使用到嘛,特别是下载文件进度等等,还有像腾讯QQ安装进度条一样,有个进度总给人良好的用户体验. 先 ...
- web_save_timestamp_param获取时间戳函数介绍
函数说明: web_save_timestamp_param("tStamp", LAST); lr_output_message("%s",lr_eval_s ...
- cf 621D
http://acm.zzkun.com/archives/717 这个大神的解答非常,额 猥琐.但是实在是太强了.感觉所有的大数都可以用 long double 了.
- “无法加载一个或多个请求的类型。有关更多信息,请检索 LoaderExceptions 属性 “之解决
今天在学习插件系统设计的时候遇到一个问题:“System.Reflection.ReflectionTypeLoadException: 无法加载一个或多个请求的类型. 于是百度一下,很多内容都差不多 ...
- Ubuntu 11.10升级Ruby (1.8.7 --> 1.9.3或者其他任意版本)
使用apt-get install ruby,安装的默认版本为1.8.7.想要使用更高版本,只能采用手工升级的方式. 方式1 使用RVM(推荐方式) 1 安装RVM http://rvm.io/rvm ...
- node基础 --概念
非阻塞IO: node.js使用了事件轮询 setTimeout是非阻塞的: 对于像http,net等原生模块中IO部分也采用了事件轮询,其本质是: 当node接受到浏览器的http请求时,底层的TC ...
- 递推DP URAL 1225 Flags
题目传送门 /* 1 r; 2 b; 3 w 2不能在最前面,所以dp[1] = 2; dp[2] = 2: 13 or 31 dp[i] = dp[i-1] + dp[i-2]; 只加1或3时,总数 ...