https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs

A               {\displaystyle A}   ,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   保持在同一条直线上,但其长度或方向也许会改变。即

A               {\displaystyle A}   ,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   保持在同一条直线上,但其长度或方向也许会改变。即

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

                    T         (                   v                 )         =         λ                   v                 ,               {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}  

where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.

If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation

                    A                   v                 =         λ                   v                 .               {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}  

There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]

Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}  

λ               {\displaystyle \lambda }   标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}  

λ               {\displaystyle \lambda }   标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

特征向量-Eigenvalues_and_eigenvectors#Graphs的更多相关文章

  1. 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...

  2. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

    Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...

  3. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  4. 论文解读《The Emerging Field of Signal Processing on Graphs》

    感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...

  5. 论文解读(AutoSSL)《Automated Self-Supervised Learning for Graphs》

    论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao ...

  6. 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》

    论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao L ...

  7. 论文阅读 Inductive Representation Learning on Temporal Graphs

    12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时 ...

  8. 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications

    知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...

  9. PCA 协方差矩阵特征向量的计算

    人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...

随机推荐

  1. hdu 4586 Play the Dice 概率推导题

    A - Play the DiceTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...

  2. AsyncTask下载JSON

    public class HttpUtils { // 从网络url上下载字符串 public static String getHttpStr(String url) { HttpClient ht ...

  3. lr数据库参数化取数:The query result is empty and same is the parameter file问题原因

    出现这个问题的原因: 是因为我们的查询结果存在中文 如果查询结果没有中文,显示正常 解决办法: 新建一个数据源: 重新再选择这个数据源,再次查询: 说明不是连接字符串的问题或者是mysql驱动的问题 ...

  4. swift1.2语言函数和闭包函数介绍

    swift1.2语言函数和闭包函数介绍 在编程中,随着处理问题的越来越复杂,代码量飞速增加.其中,大量的代码往往相互重复或者近似重复.如果不采有效方式加以解决,代码将很难维护. swift1.2语言函 ...

  5. mysql之对视图的操作

    1. 为什么要使用视图? 为了提高复杂SQL语句的复用性和表操作的安全性,MySQL数据库管理系统提供了视图特性.所谓视图,本质上是一种虚拟表,在物理上是不存在的,其内容与真实的表相似,包含一系列带有 ...

  6. json学习系列(7)JSONBuilder的用法

    JSONBuilder可以向文件中写入写入json字符串.如下面的例子: public class Test { public static void main(String args[]) thro ...

  7. js网页换肤

    使网页背景颜色可选黄/粉 <html> <head> <meta charset="utf-8"> <meta name="ge ...

  8. POJ2115 C Looooops(线性同余方程)

    无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...

  9. !cocos2d ccdictionary->retain()的问题

    我再a类当中生命了一个dict,将它带入到b类当中,但没有在b类初始化时retain,于是在update当中找不到了.啃爹不.记得retain()

  10. POJ 2763 (树链剖分+边修改+边查询)

    题目链接:http://poj.org/problem?id=2763 题目大意:某人初始在s点.有q次移动,每次移动沿着树上一条链,每经过一条边有一定花费,这个花费可以任意修改.问每次移动的花费. ...