Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
 
题目大意:求离散对数,B^L = N (mod P),其中P是素数,求L。
思路:大步小步算法的模板题。
PS:白书上的模板少了个ceil向上取整……
PS:用map来哈希TLE了。速度和手写哈希原来差距这么大……
 
代码(47MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL; const int SIZEH = ; struct hash_map {
int head[SIZEH], size;
int next[SIZEH];
LL state[SIZEH], val[SIZEH]; void init() {
memset(head, -, sizeof(head));
size = ;
} void insert(LL st, LL sv) {
LL h = st % SIZEH;
for(int p = head[h]; ~p; p = next[p])
if(state[p] == st) return ;
state[size] = st; val[size] = sv;
next[size] = head[h]; head[h] = size++;
} LL find(LL st) {
LL h = st % SIZEH;
for(int p = head[h]; ~p; p = next[p])
if(state[p] == st) return val[p];
return -;
}
} hashmap; LL inv(LL a, LL n) {
if(a == ) return ;
return ((n - n / a) * inv(n % a, n)) % n;
} LL pow_mod(LL x, LL p, LL n) {
LL ret = ;
while(p) {
if(p & ) ret = (ret * x) % n;
x = (x * x) % n;
p >>= ;
}
return ret;
} LL BabyStep(LL a, LL b, LL n) {
LL e = , m = LL(ceil(sqrt(n + 0.5)));
hashmap.init();
hashmap.insert(, );
for(int i = ; i < m; ++i) {
e = (e * a) % n;
hashmap.insert(e, i);
}
LL v = inv(pow_mod(a, m, n), n);
for(int i = ; i < m; ++i) {
LL t = hashmap.find(b);
if(t != -) return i * m + t;
b = (b * v) % n;
}
return -;
} int main() {
LL p, b, n;
while(cin>>p>>b>>n) {
LL ans = BabyStep(b, n, p);
if(ans == -) puts("no solution");
else cout<<ans<<endl;
}
}

POJ 2417 Discrete Logging(离散对数-小步大步算法)的更多相关文章

  1. POJ 2417 Discrete Logging 离散对数

    链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...

  2. BSGS算法+逆元 POJ 2417 Discrete Logging

    POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accept ...

  3. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

  4. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  5. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  6. POJ - 2417 Discrete Logging(Baby-Step Giant-Step)

    d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...

  7. POJ 2417 Discrete Logging BSGS

    http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...

  8. poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

    http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...

  9. POJ 2417 Discrete Logging

    http://www.cnblogs.com/jianglangcaijin/archive/2013/04/26/3045795.html 给p,a,b求a^n==b%p #include<a ...

随机推荐

  1. yum change source repo centos共存安装sun jdk6和jdk7

    之前一直使用的是163的源,今天从微博看到阿里云推出了自己的源.因为我的主机是阿里云,所以可以走内网,速度提升更快.过程如下:cd /etc/yum.repos.d/mv mv CentOS-Base ...

  2. SQL查询一周内过生日的用户

    SELECT birthday, )) + '-' + )) + '-' + )) AS datetime) AS Nbirthday FROM CRM_Customer WHERE birthday ...

  3. MongoDB上的索引

    1. 将索引建在number键上名为nameIndex并且为正序索引({number:-1}为倒序索引) 如: db.list名.ensureIndex({number:1},{name:" ...

  4. Mac废纸篓 不能完全清空的有效解决方法

    摘自:http://www.neonan.com/articles/5582 对于苹果用户来说, 可能都会遇到过这样的情况(尽管这种情况是不常出现的!), Mac OS X系统突然出现一些顽固的文件家 ...

  5. Interview with BOA

    1. BFS 2. QuickSort 3. PCA, 1000 articles, so many factors, how to reduce factors. 4. newton's metho ...

  6. 数据库笔记--常见sql操作

    1.数据库联表查询: 在实际项目中有时需要将两个表结合到一起进行查询,此处介绍其语法: 左连接查询:select * from tableA left join tableB on tableA.fi ...

  7. RabbitMQ学习总结 第二篇:快速入门HelloWorld

    目录 RabbitMQ学习总结 第一篇:理论篇 RabbitMQ学习总结 第二篇:快速入门HelloWorld RabbitMQ学习总结 第三篇:工作队列Work Queue RabbitMQ学习总结 ...

  8. SwipeRefreshLayout实现上拉加载下拉刷新

    package com.example.swiperefreshlayoutdemo; import java.util.ArrayList;import java.util.HashMap; imp ...

  9. C# 键盘钩子类

    键盘钩子类代码如下 class globalKeyboardHook { #region Constant, Structure and Delegate Definitions /// <su ...

  10. Java遇见HTML——JSP篇之JavaWeb简介

    一.什么是WEB应用程序 Web应用程序是一种可以通过Web(互联网)访问的应用程序.Web应用程序的一个最大好处是用户很容易访问应用程序.用户只需要有浏览器即可,不需要再安装其他软件. 为什么要学习 ...