UVa 106 - Fermat vs Pythagoras(数论题目)
| Fermat vs. Pythagoras |
Background
Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of
for n > 2.
The Problem
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of

where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x<y< z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values
such that p is not part of any triple (not just relatively prime triples).
The Input
The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file.
The Output
For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is
). The second number is the number of positive integers
that are not part of any triple whose components are all
. There should be one output line for each input line.
Sample Input
10
25
100
Sample Output
1 4
4 9
16 27
解题思路:
这是一道数论题,用数学的语言描述就是:x, y, z∈N,给定一个数n,找出所有的x, y, z ≤ n,使得x2 + y2 = z2成立。如果要穷举所有的x, y, z的话,按照题目所给的数据量,肯定是无法在限定时间内完成的。考虑利用毕达哥拉斯数的性质生成所有的x, y, z来解决,数学推导简要介绍如下:
先假定x, y, z两两互质,由于x, y互质,故x, y中至少有1个是奇数。下面用反证法证明x和y中有且只有1个奇数。假定x, y都为奇数,设:
- x = 2a + 1
- y = 2b + 1
- x2 + y2 = (2a + 1)2 + (2b + 1)2
= 4(a2 + b2 + a + b) + 2
又因为x2和y2是奇数,则z2是偶数,且必能被4整除,与上式矛盾,因此x, y中只有一个奇数。
假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作
- 2z = (z + x) + (z - x)
- 2x = (z + x) - (z - x)
那么跟据最大公因数性质,z + x和z - x的最大公因数也为2,又因为:
- (z + x)(z - x) = y2,两边同除以4得:
((z + x) / 2)((z - x) / 2) = (y / 2)2
故可令:
- z + x = 2m2, z - x = 2n2
其中z = m + n, x = m - n(m与n互质)
则有:
- y2 = z2 - x2 = 2m22n2 = 4m2n2
即y = 2mn。
综上所述,可得到下式:
- x = m2 - n2, y = 2mn, z = m2 + n2. (m, n为任意自然数)
这里还有一个问题:题目要求统计(x, y, z)三元组的数量时只统计x,y和z两两互质的的情况,这个问题用上面的算法就可以解决了。但对于统计p的数量,题目并不限定三元组是两两互质的。但是上式不能生成所有x, y, z并不是两两互质的情况。然而假设x与y最大公因数w不为1,则z也必能被w整除,因此w为x, y, z三个数的公因数。归纳总结可知,所有非两两互质的x0, y0, z0都可由一组互质的x, y, z乘以系数得到。根据以上理论就可以快速的求解了。
参考代码:
#include <cstdio>
#include <cmath>
#include <cstring>
#define N 1000010
bool used[N]; long long gcd(long long a , long long b)
{ return b== ? a: gcd(b,a%b); } int main()
{
long long n,a,b,c;
long long count1,count2;
while(scanf("%lld",&n)!=EOF)
{
count1=count2=;
memset(used,,sizeof(used));
long long m=(long long)sqrt(n+0.5);
for(long long t=; t<=m; t+=)
for(long long s=t+; s*t<=n; s+=)
if(gcd(s,t)==) //s>t>=1且s与t互质
{
a=s*t; //奇数
b=(s*s-t*t)/; //偶数
c=(s*s+t*t)/; //奇数
if(c<=n) //在n范围内的PPT
{
count1++;
//printf("本原勾股数组:%lld %lld %lld\n",a,b,c);
if(!used[a]) { count2++; used[a]=; }
if(!used[b]) { count2++; used[b]=; }
if(!used[c]) { count2++; used[c]=; } for(int j=; c*j<=n; j++) //j是倍数
{
if(!used[a*j]) { count2++; used[a*j]=; }
if(!used[b*j]) { count2++; used[b*j]=; }
if(!used[c*j]) { count2++; used[c*j]=; }
}
}
}
printf("%lld %lld\n",count1,n-count2);
}
return ;
}
UVa 106 - Fermat vs Pythagoras(数论题目)的更多相关文章
- Uva 106 - Fermat vs. Pythagoras 解题报告
数论题,考查了本原勾股数(PPT) 对一个三元组(a,b,c)两两互质 且满足 a2 + b2 = c2 首先有结论 a 和 b 奇偶性不同 c总是奇数(可用反证法证明,不赘述) 设 a为奇数 b为偶 ...
- 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras
Fermat vs. Pythagoras Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 1493 Accepted: ...
- Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...
- uva 11246 - K-Multiple Free set(数论)
题目链接:uva 11246 - K-Multiple Free set 题目大意:给定n,k.求一个元素不大于n的子集,要求该子集的元素尽量多,而且不含两个数满足a∗k=b. 解题思路:容斥原理.f ...
- uva 11300 - Spreading the Wealth(数论)
题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...
- UVA 10622 - Perfect P-th Powers(数论)
UVA 10622 - Perfect P-th Powers 题目链接 题意:求n转化为b^p最大的p值 思路:对n分解质因子,然后取全部质因子个数的gcd就是答案,可是这题有个坑啊.就是输入的能够 ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- UVA 1426 - Discrete Square Roots(数论)
UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
随机推荐
- Direct3D11学习:(三)Direct3D11初始化
转载请注明出处:http://www.cnblogs.com/Ray1024 一.概述 做完一系列的准备工作之后,我们就正式进入Direct3D11的学习了.我们就从Direct3D11的初始化工作开 ...
- sed用例
文件空行处理 1. 在文件中的每一行后面添加一个空行. sed 'G' test.txt 解释: Get命令是将保留空间的内容取出,并添加到当前模式空间的内容之后(添加一行).当保留空间为空时,效果为 ...
- mysql truncate带有被引用外键的表时报错解决方法
清空具有外键约束的表时报ERROR 1701(42000)的解决 mysql> truncate table t_users;ERROR 1701 (42000): Cannot trunc ...
- LVM快照(snapshot)备份
转载自:http://wenku.baidu.com/link?url=cbioiMKsfrxlzrJmoUMaztbrTelkE0FQ8F9qUHX7sa9va-BkkL4amvzCCAKg2hBv ...
- 存储过程分页 Ado.Net分页 EF分页 满足90%以上
存储过程分页: create proc PR_PagerDataByTop @pageIndex int, @pageSize int, @count int out as select top(@p ...
- ok6410 android driver(7)
This article talk about how to test device driver on JNI. There are two ways to test the device driv ...
- SQL Server 2008 FILESTREAM特性管理文件
在SQL Server 2008中,新的FILESTREAM(文件流)特性和varbinary列配合,你可以在服务器的文件系统上存储真实的数据,但可以在数据库上下文内管理和访问,这个特性让SQL Se ...
- GridView如何实现双击行进行编辑,更新
虽然标题是原创,但是其实主要的思想呢还是接见了晓风残月的思路,今天在晓风残月的博客上看到了如何利用GridView来实现双击进行编辑.我决定动手实现一下,由于还没有实现双击进行更改操作,所以顺便就把这 ...
- winform去掉右上角关闭按钮
一种方法是可以在窗体的属性面板将窗体的 ControlBox属性设置为false,或者在窗体的构造函数中这样写: public Form1() { InitializeComponent(); thi ...
- javascript的 == 与 === 的区别
1.对于基础类型,例如string,number ==和===是有区别的 1)不同类型间比较,==之比较“转化成同一类型后的值”看“值”是否相等,===如果类型不同,其结果就是不等 2)同类型比较,直 ...