Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

题目的意思是求解从路标N到路标1的最短路径,简单的最短路径题目。

题目有一个坑:输入有重边,所以要选择最小的长度。

#include<string.h>
#include<stdio.h>
#include<math.h>
#define typec int
const int MAXN=1010;
const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int pre[MAXN];
typec cost[MAXN][MAXN];
typec l[MAXN];
void D(int n,int beg)
{
for(int i=1;i<=n;i++)
{
l[i]=INF;vis[i]=false;pre[i]=-1;
}
l[beg]=0;
for(int j=1;j<=n;j++)
{
int k=-1;
int Min=INF;
for(int i=1;i<=n;i++)
if(!vis[i]&&l[i]<Min)
{
Min=l[i];
k=i;
}
if(k==-1)break;
vis[k]=true;
for(int i=1;i<=n;i++)
if(!vis[i]&&l[k]+cost[k][i]<l[i])
{
l[i]=l[k]+cost[k][i];
pre[i]=k;
}
}
} int main()
{
int n,i,j,t,a,b,c;
while(scanf("%d%d",&t,&n)!=EOF)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
cost[i][j]=(i==j)? 0:INF; for(i=0;i<t;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(cost[a][b]>c)
cost[a][b]=cost[b][a]=c;
}
D(n,n);
printf("%d\n",l[1]);
}
return 0;
}

  

Til the Cows Come Home的更多相关文章

  1. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  2. Til the Cows Come Home(最短路)

    Til the Cows Come Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I ...

  3. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  4. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  5. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

  6. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

  7. 3386/1752: [Usaco2004 Nov]Til the Cows Come Home 带奶牛回家

    3386/1752: [Usaco2004 Nov]Til the Cows Come Home 带奶牛回家 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit ...

  8. (Dijkstra) POJ2387 Til the Cows Come Home

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 81024   Accepted ...

  9. POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...

  10. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

随机推荐

  1. linux下安装jdk的几种方式

    1.rpm方式安装: rpm -qa | grep jdk 查看是否安装了jdk,或者用java -version查看java版本 rpm -e --nodeps java-1.7.0-openjdk ...

  2. (整理)SQLServer 大数据的插入与查询

    最近几天一直在折腾大数据量的查询,最后在索引.分页存储过程和控件以及视图的帮助下,搞定了.这篇文章记录解决问题时候查看的网友的分享链接,以及大数据量数据的插入链接. DatagridView Virt ...

  3. Range-Based for Loops

    for ( decl : coll ) { statement } where decl is the declaration of each element of the passed collec ...

  4. SSH整合(1)异常

    信息: No Spring WebApplicationInitializer types detected on classpath 十二月 01, 2016 10:06:12 下午 org.apa ...

  5. Swift 协议

    /// 一般情况下,定义的协议都必须实现 protocol SomeProtocal { func doSomething() } /// 定义一个类,并且遵守协议 class Teacher:Som ...

  6. Failed to load the JNI shared library jvm.dll

    jdk和使用的ide版本不符合,换一个版本的jdk或者换版本的ide

  7. spark Mllib基本功系列编程入门之 SVM实现分类

    话不多说.直接上代码咯.欢迎交流. /** * Created by whuscalaman on 1/7/16. */import org.apache.spark.{SparkConf, Spar ...

  8. Objective c, +load, +initialize 方法

    +load() 当类被加载入程序的时候会执行+load方法 +initialize() 当类第一次被使用的时候会执行+initialize方法 这两个方法都只会被执行一次.

  9. asp.net C# 未能加载文件或程序集或它的某一个依赖项。需要强名称程序集。的解决办法

    asp.net C# 未能加载文件或程序集或它的某一个依赖项.需要强名称程序集.的解决办法 出现这个错误是原因:是有签名的DLL引用了无签名的DLL 如上图所示,就是因为引用Entity.MVCEnt ...

  10. 理解angularjs的作用域

    <!doctype html> <html ng-app="myApp"> <head> <script src="http:/ ...