(矩阵快速幂)51NOD 1242斐波那契数列的第N项
输入
输入1个数n(1 <= n <= 10^18)。
输出
输出F(n) % 1000000009的结果。
输入样例
11
输出样例
89
解:由于斐波那契数列的第N(N>2)项等于N-1个{{1,1},{1,1}}矩阵相乘后的第一项。
由于这种矩阵形式上的特殊性(对称,乘法可交换),我们可以借助快速幂的思想可以快速求解这个答案。
#include <stdio.h> #define MOD 1000000009 int main()
{
long long n;
while (scanf_s("%lld", &n) != EOF)
{
long long a[][] = { ,,, }, tmp[][] = { ,,, };
if (n < )printf("%d\n", n);
else
{
--n;
while (n)
{
if (n % )
{
int q, w, e;
q = (tmp[][] * a[][] + tmp[][] * a[][]) % MOD;
w = (tmp[][] * a[][] + tmp[][] * a[][]) % MOD;
e = (tmp[][] * a[][] + tmp[][] * a[][]) % MOD;
a[][] = q;
a[][] = a[][] = w;
a[][] = e;
}
int q, w, e;
q = (tmp[][] * tmp[][] + tmp[][] * tmp[][]) % MOD;
w = (tmp[][] * tmp[][] + tmp[][] * tmp[][]) % MOD;
e = (tmp[][] * tmp[][] + tmp[][] * tmp[][]) % MOD;
tmp[][] = q;
tmp[][] = tmp[][] = w;
tmp[][] = e;
n >>= ;
}
printf("%d\n", a[][]);
}
}
}
(矩阵快速幂)51NOD 1242斐波那契数列的第N项的更多相关文章
- 51nod 1242 斐波那契数列的第N项
之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂 前面讲的挺 ...
- 51Nod 1242 斐波那契数列的第N项(矩阵快速幂)
#include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; ...
- 51nod 1242 斐波那契数列的第N项——数学、矩阵快速幂
普通算法肯定T了,所以怎么算呢?和矩阵有啥关系呢? 打数学符号太费时,就手写了: 所以求Fib(n)就是求矩阵 | 1 1 |n-1 第一行第一列的元素. | 1 0 | 其实学过线代 ...
- 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...
- 1242 斐波那契数列的第N项
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F( ...
- 51Nod——T 1242 斐波那契数列的第N项
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
- python脚本10_打印斐波那契数列的第101项
#打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 ...
- 51Nod - 1242 斐波那契(快速幂)
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 矩阵快速幂--51nod-1242斐波那契数列的第N项
斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...
随机推荐
- 清北省选 DAY last 集锦
这是题目描述的链接: http://lifecraft-mc.com/wp-content/uploads/2018/03/problems1.pdf (虽然这次没去清北,但还是厚颜无耻的做了一下这套 ...
- Codeforces Round Edu 36
A.B.C 略 D(dfs+强连通分量) 题意: 给出一个n(n<=500)点m(m<=100000)边的有向图,问能否通过删去一条边使得该图无环. 分析: 最简单的想法就是枚举一条边删去 ...
- JavaOne Online Hands-on Labs
http://www.oracle.com/technetwork/java/index-156938.html
- Using DTrace to Profile and Debug A C++ Program
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-cc-138561.html
- python执行系统命令的几种方法
(1) os.system 这个方法是直接调用标准C的system() 函数,仅仅在一个子终端运行系统命令,而不能获取命令执行后的返回信息. import os os.system('cat /pro ...
- 进程(WINAPI),遍历并查找树状的进程信息,实现控制系统进程
#include <TlHelp32.h> //检索系统全部进程 void showall() { PROCESSENTRY32 pe32 = {0}; pe32.dwSize = siz ...
- uva558 Wormholes SPFA 求是否存在负环
J - Wormholes Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Stat ...
- [Javascript] Use JavaScript's for-in Loop on Objects with Prototypes
Loops can behave differently when objects have chained prototype objects. Let's see the difference w ...
- lightoj 1138 - Trailing Zeroes (III)【二分】
题目链接:http://lightoj.com/volume_showproblem.php? problem=1138 题意:问 N. 末尾 0 的个数为 Q 个的数是什么? 解法:二分枚举N,由于 ...
- 微信小程序之 Index(仿淘宝分类入口)
1.逻辑层 index.js //index.js //获取应用实例 const app = getApp() Page({ /** * 页面的初始数据 */ data: { menu: { imgU ...