适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。

算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的
结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在
当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

实现方法:

  建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为
0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列
为空。

判断有无负环:
  如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

首先建立起始点a到其余各点的
最短路径表格

首先源点a入队,当队列非空时:
 1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

program:

#include<cstdio>
using namespace std;
struct node
{int x;
 int value;
 int next;
};
node e[60000];
int visited[1505],dis[1505],st[1505],queue[1000];
int main()
{
  int n,m,u,v,w,start,h,r,cur;
  freopen("c.in","r",stdin);
  freopen("c.out","w",stdout);
  while(scanf("%d%d",&n,&m)!=EOF)
  {
    for(int i=1;i<=1500;i++)
      {visited[i]=0;
       dis[i]=-1;
       st[i]=-1;  //这个初始化给下边那个while循环带来影响
      }
 
   for(int i=1;i<=m;i++)
      {
       scanf("%d%d%d\n",&u,&v,&w);    
       e[i].x=v;            //记录后继节点    相当于链表中的创建一个节点,并使得数据域先记录
       e[i].value=w;
       e[i].next=st[u];     //记录顶点节点的某一个边表节点的下标,相当于在链表中吧该边表节点的next指针先指向他的后继边表节点
       st[u]=i;                //把该顶点的指针指向边表节点,相当于链表中的插入中,头结点的指针改变
      }
    start=1;
    visited[start]=1;
    dis[start]=0;
    h=0;
    r=1;
    queue[r]=start;
    while(h!=r)
     {

h=(h+1)%1000;
      cur=queue[h];
      int tmp=st[cur];
      visited[cur]=0;

while(tmp!=-1)
        {
            if (dis[e[tmp].x]<dis[cur]+e[tmp].value)            //改成大于号才对
            {
                   dis[e[tmp].x]=dis[cur]+e[tmp].value;
                    if(visited[e[tmp].x]==0)
                      {

visited[e[tmp].x]=1;
                           r=(r+1)%1000;
                            queue[r]=e[tmp].x;
                       }
            }
         tmp=e[tmp].next;     
        }
     }
    printf("%d\n",dis[n]);
  }
  return 0;  
}

SPFA 算法详解( 强大图解,不会都难!) (转)的更多相关文章

  1. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  2. SPFA 算法详解

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径 ...

  3. SPFA算法详解

    前置知识:Bellman-Ford算法 前排提示:SPFA算法非常容易被卡出翔.所以如果不是图中有负权边,尽量使用Dijkstra!(Dijkstra算法不能能处理负权边,但SPFA能) 前排提示*2 ...

  4. Bellman-Ford算法与SPFA算法详解

    PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...

  5. Bellman-Ford&&SPFA算法详解

    Dijkstra在正权图上运行速度很快,但是它不能解决有负权的最短路,如下图: Dijkstra运行的结果是(以1为原点):0 2 12 6 14: 但手算的结果,dist[4]的结果显然是5,为什么 ...

  6. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  7. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  8. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  9. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

随机推荐

  1. .net异步编程async和await的讨论收获

    微软官方描述: C# 5 引入了一种简便方法,即异步编程.此方法利用了 .NET Framework 4.5 及更高版本..NET Core 和 Windows 运行时中的异步支持. 编译器可执行开发 ...

  2. BC#76.2DZY Loves Balls

    DZY Loves Balls  Accepts: 659  Submissions: 1393  Time Limit: 4000/2000 MS (Java/Others)  Memory Lim ...

  3. [USACO10FEB]慢下来Slowing down

    线段树  树的dfs序 来自   洛谷 P1982   的翻译 by  GeneralLiu 来自 jzyz 的翻译 %mzx 线段树  dfs序 数据结构的应用 “数据结构 是先有需求 再有应用” ...

  4. bzoj5108 [CodePlus2017]可做题 位运算dp+离散

    [CodePlus2017]可做题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 87  Solved: 63[Submit][Status][Dis ...

  5. 从零开始写STL - 智能指针

    从零开始写STL - 智能指针 智能指针的分类及其特点: scoped_ptr:初始化获得资源控制权,在作用域结束释放资源 shared_ptr: 引用计数来控制共享资源,最后一个资源的引用被释放的时 ...

  6. 洛谷—— P1714 切蛋糕

    https://www.luogu.org/problem/show?pid=1714 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每 ...

  7. service mesh架构

    service  mesh 系列文章 https://my.oschina.net/iamlipeng/blog/1631575 http://developer.51cto.com/art/2018 ...

  8. Spring MVC页面重定向实例

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/mvc-framework/spring-page-redirection-example.html ...

  9. 【.Net Core 学习系列】-- EF Core实践(DB First)

    一.开发环境: VS2015, .Net Core 1.0.0-preview2-003156 二.准备数据: CREATE DATABASE [Blogging]; GO USE [Blogging ...

  10. C#构造方法(函数) C#方法重载 C#字段和属性 MUI实现上拉加载和下拉刷新 SVN常用功能介绍(二) SVN常用功能介绍(一) ASP.NET常用内置对象之——Server sql server——子查询 C#接口 字符串的本质 AJAX原生JavaScript写法

    C#构造方法(函数)   一.概括 1.通常创建一个对象的方法如图: 通过  Student tom = new Student(); 创建tom对象,这种创建实例的形式被称为构造方法. 简述:用来初 ...