Hackerrank manasa-and-combinatorics(数学推导)
题意:有n个字符A,2n个字符B,问你能用这3n个字母组成多少种字符串,使得组成的字符串所有前缀与后缀的B的数目都大于等于A的数目,对答案mod 99991
分析:类似卡特兰数
ans=总方案数-存在前缀不满足-存在后缀不满足+存在前缀后缀同时不满足
考虑前缀不满足,那么说明在某个第一个奇数位2m+1,之前有m+1个A,m个B,后面3n-2m-1个位置上有n-m-1个A和2n-m个B
如果把后面的A和B同时取反,那么就是n-m-1个B和2n-m个A,总共就是n-1个B和2n+1个A
我们考虑一个长度为3n的序列,其中有n-1个B,2n+1个A,那么一种这样的序列必定对应原问题的一个不合法序列
所以对于存在前缀不满足的,ans1=C(3n,n-1)
同理,后缀是等价的,ans2=C(3n,n-1)
对于前缀和后缀同时不存在的,同时头尾考虑两个奇数位,将中间的数取反,答案是C(3n,n-2)
所以最后结果ans=C(3n,n)-2*C(3n,n-1)+C(3n,n-2)
顺便提一下,这是卡特兰数证明的思路
Hackerrank manasa-and-combinatorics(数学推导)的更多相关文章
- 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...
- 关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...
- UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
- 『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...
- LDA-线性判别分析(二)Two-classes 情形的数学推导
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了 ...
- leetcode 343. Integer Break(dp或数学推导)
Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...
- [hdu5307] He is Flying [FFT+数学推导]
题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...
- ZOJ3329(数学推导+期望递推)
要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...
- [国家集训队]整数的lqp拆分 数学推导 打表找规律
题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...
- HDU 5073 Galaxy(Anshan 2014)(数学推导,贪婪)
Galaxy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total S ...
随机推荐
- JavaScript--编程练习2
制作一个跳转提示页面: 要求: 1. 如果打开该页面后,如果不做任何操作则5秒后自动跳转到一个新的地址,如慕课网主页. 2. 如果点击“返回”按钮则返回前一个页面. 效果: 注意: 在窗口中运行该程序 ...
- 二分图最大匹配(匈牙利算法) UVA 10080 Gopher II
题目传送门 /* 匈牙利算法:这题比UVA_670简单,注意是要被吃的鼠的最少个数,套模板 */ #include <cstdio> #include <algorithm> ...
- 08使用NanoPiM1Plus在Android4.4.2下接TF卡
08使用NanoPiM1Plus在Android4.4.2下接TF卡 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2017/12/5 17:51 版本: ...
- Android OKHttp网络框架
好久没逛简书了.这周公司的项目也已经愉快的迭代了新版本,对于之前一直存留的东西一直没怎么梳理,今天想说说这两年特别火的网络框架.okhttp我想大部分Android开发者都不陌生,因为它的到来.是我们 ...
- 学习一波redis
作为一名合格的java程序员,做web开发的,除了java,mysql,免不了用到内存数据库redis. 身为一名菜鸟,是时候来一波redis从入门到放弃了,哦不,从入门到精通.. 一.安装部署red ...
- java设计模式之单例模式总结
面试手写单例模式(通用版)
- Angular ZoneJS 原理
Zone.js到底是如何工作的? 原文链接: blog.kwintenp.com 如果你阅读过关于Angular 2变化检测的资料,那么你很可能听说过zone.Zone是一个从Dart中引入的特性并被 ...
- 微服务网关从零搭建——(三)Ocelot网关 + identity4
增加验证服务 1.创建名为AuthService 的core 空项目 2.修改startup文件 using System; using System.Collections.Generic; usi ...
- Anaconda安装xgboost的过程和踩过的坑
win10下安装xgb,安装的过程波折起伏,花了5个小时,给后来人做参考喽 第一次尝试 利用以下两个软件 Git for Windows.MINGW进行安装. 安装可以参考:(https://blog ...
- 通过docker-composer启动容器nginx,并完成spring.boot的web站点端口转发
前面已经讲过2篇基于docker的mysql.redis容器编排并启动.这次将练习下nginx的docker方式的部署,以及通过nginx去代理宿主主机上的Web服务应该怎么配 PS:(这里由于ngi ...