题解 洛谷P4550/BZOJ1426 【收集邮票】
这显然是一道概率的题目(废话)
设发\(f[i]\)表示买到第\(i\)张邮票还需要购买的期望次数,\(g[i]\)表示买到第\(i\)张邮票还需要期望花费的钱。
那么答案显然为\(g[0]\),我们来考虑怎么转移。
对于\(f[i]\),有三种情况:
- 现在有\(\frac{i}{n}\)的几率会买到重复的邮票,即\(f[i] \times \frac{i}{n}\).
- 现在有\(\frac{n-i}{n}\)的几率会买到新的邮票,即\(f[i+1] \times \frac{n-i}{n}\).
- 花费\(1\)次买现在的邮票。
所以我们可以列出:\(f[i]=f[i] \times \frac{i}{n} + f[i+1] \times \frac{n-i}{n} +1\).
方程较复杂,我们来化简一下。
\(f[i] - f[i] \times \frac{i}{n} =f[i+1] \times \frac{n-i}{n} +1\)
\(f[i] \times \frac{n-i}{n} =f[i+1] \times \frac{n-i}{n} +1\)
$f[i] =f[i+1] \times \frac{n}{n-i} $
我们可以知道\(f[n]\)是等于\(0\)的,所以倒推即可。
那对于\(g[i]\)怎么办呢?
同理,\(g[i]\)的推导跟\(f[i]\)类似,也分为买到自己已有的邮票和没有的邮票两种情况,即:
$g[i]=(f[i]+g[i]+1) \times \frac{i}{n} + (f[i+1]+g[i+1]+1) \times \frac{n-i}{n} $
同时我们也来化简一下:
$g[i]=\frac{i}{n}f[i]+\frac{i}{n}g[i] + \frac{n-i}{n}(f[i+1]+g[i+1]) +1 \(
\)\frac{n-i}{n}g[i]=\frac{i}{n}f[i] + \frac{n-i}{n}(f[i+1]+g[i+1]) +1 \(
\)g[i]=\frac{i}{n-i}f[i] + f[i+1]+g[i+1] +\frac{n}{n-i} $
\(g[n]\)仍然为0,我们还是可以倒推。
#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define RI register int
using namespace std;
const int N=1e4+2;
int n;double f[N],g[N];
inline double S(int x,int y){return (1.0*x)/(1.0*y);}
int main(){
scanf("%d",&n);
for(register int i=n-1;~i;--i){
f[i]=f[i+1]+S(n,n-i);
g[i]=S(i,n-i)*f[i]+g[i+1]+f[i+1]+S(n,n-i);
}printf("%.2lf",g[0]);
return 0;
}
题解 洛谷P4550/BZOJ1426 【收集邮票】的更多相关文章
- 洛谷P4550 【收集邮票】
题目链接: 神仙题QAQ 题目分析: 概率期望题是不可能会的,一辈子都不可能会的QAQ 这个题也太仙了 首先明确一下题意里面我感觉没太说清楚的地方,这里是抽到第\(i\)次要\(i\)元钱,不是抽到第 ...
- 洛谷 P3800 Power收集
题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道她能收集多少P点,然而这个问题她答不 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
随机推荐
- bzoj 1898
1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1197 Solved: 661[Submit][S ...
- Python安装、配置图文详解
原文地址:http://weixiaolu.iteye.com/blog/1617440 目录: 一. Python简介 二. 安装python 1. 在windows下安装 2. 在Linux下安装 ...
- 利用HashMap存取对象并获得键值集合
1.HashMap 已实现的接口 Serializable, Cloneable, Map<K,V> 2.方法摘要 相关代码 /** * * @param ha * write(HashM ...
- [软件安装]MYSQL
https://dev.mysql.com/downloads/repo/yum/ wget https://repo.mysql.com//mysql57-community-release-el7 ...
- bzoj 3144 [Hnoi2013]切糕【最小割+dinic】
都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...
- bzoj 3110 [Zjoi2013]K大数查询【树套树||整体二分】
树套树: 约等于是个暴力了.以区间线段树的方式开一棵权值线段树,在权值线段树的每一个点上以动态开点的方式开一棵区间线段树. 结果非常惨烈(时限20s) #include<iostream> ...
- java基本数据类型所占字节数
JAVA基本数据类型所占字节数是多少?(32位系统) byte 1字节 short 2字节 int 4字节 ...
- 人工智能-深度学习(2)TensorFlow安装及基本使用(学习笔记)
一.TensorFlow 简介 TensorFlow 是 Google 开源的一款人工智能学习系统.为什么叫这个名字呢? Tensor 的意思是张量,代表 N 维数组:Flow 的意思是流,代表基于数 ...
- VS2010中使用命令行参数 分类: c/c++ 2014-07-11 22:24 634人阅读 评论(0) 收藏
在Linux下编程习惯了使用命令行参数,故使用VS2010时也尝试了一下. 新建项目,c++编写程序如下: #include<iostream> #include<fstream&g ...
- 454 4Sum II 四数相加 II
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0.为了使问题简单化,所有的 A, ...