HDU_1018_n(1e7)的阶乘的结果的位数
http://acm.hdu.edu.cn/showproblem.php?pid=1018
Big Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33695 Accepted Submission(s): 15894
10
20
任意一个正整数a的位数等于(int)log10(a) + 1;
对于任意一个给定的正整数a,
假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
又因为
log10(10^(x-1))<=log10(a)<(log10(10^x))
即x-1<=log10(a)<x
则(int)log10(a)=x-1,
即(int)log10(a)+1=x
即a的位数是(int)log10(a)+1
那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
=log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有)
=log10(1)+log10(2)+log10(3)+......+log10(n)
总结一下:n的阶乘的位数等于
(int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1
HDU_1018_n(1e7)的阶乘的结果的位数的更多相关文章
- HDU 1018 Big Number (阶乘位数)
题意: 给一个数n,返回该数的阶乘结果是一个多少位(十进制位)的整数. 思路: 用对数log来实现. 举个例子 一个三位数n 满足102 <= n < 103: 那么它的位数w 满足 w ...
- HDU 1018(阶乘位数 数学)
题意是求 n 的阶乘的位数. 直接求 n 的阶乘再求其位数是不行的,开始时思路很扯淡,想直接用一个数组存每个数阶乘的位数,用变量 tmp 去存 n 与 n - 1 的阶乘的最高位的数的乘积,那么 n ...
- 斯特林(Stirling)公式 求大数阶乘的位数
我们知道整数n的位数的计算方法为:log10(n)+1n!=10^m故n!的位数为 m = log10(n!)+1 lgN!=lg1+lg2+lg3+lg4+lg5+................. ...
- 单身狗进化——求n!的位数
题目: 分析: 这道题目要求的是n!的位数,显然一种思路是先求出n!的值,假定为res,然后再计算res的位数,这种方法在n比较小时是可以的,如果res为int型,一旦n>16,res就会超出i ...
- CHD 2014迎新杯比赛题解
A. 草滩的魔法学校 分析: 高精度乘法 或 JAVA大数类 很明显 10000 的阶乘已经远远超过 64 位数能表示的范围了.所以我们要用一个比较大的数组来存放这个数.那数组要开多少位合适呢?我们不 ...
- N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .
求某个大数的阶乘的位数 . 得到的值 需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等 ...
- UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)
题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k. k暂时不用直接转成b进制. (1 ...
- ACM 阶乘数位数
描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)? 输入 首行输入n,表示有多少组测试数据(n<1 ...
- 51nod 1058 N的阶乘的长度 位数公式
1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N( ...
随机推荐
- 在DevExpress GridControl的一列中显示图片
作者:jiankunking 出处:http://blog.csdn.net/jiankunking 近期做项目的时候用到了将GridControl中一列设置为PictureEdit类型,然后通过这一 ...
- webpy学习笔记之中的一个
这几天在学习webpy框架,之前学过一段时间,后来各种转移框架,导致没有学透彻,都是皮毛,各种打印hello world! 汗! 如今将webpy的学习过程和思路写下来,便于复习和总结. 资料主要是w ...
- 预载入和javascript对象
请参见 http://www.west263.com/info/html/wangyezhizuo/Javascript/20080225/34168.html
- Linux 系统内核空间与用户空间通信的实现与分析
本文转载自:https://www.ibm.com/developerworks/cn/linux/l-netlink/index.html 多数的 Linux 内核态程序都需要和用户空间的进程交换数 ...
- [Jsoi2015]字符串树
https://www.zybuluo.com/ysner/note/1298148 题面 字符串树本质上还是一棵树,即\(N\)个节点\(N-1\)条边的连通无向无环图,节点 从\(1\)到\(N\ ...
- LED全彩显示屏色度空间
摘要:LED全彩显示屏.LED电子大屏幕如果要有一个良好的视觉效果,其中色度占有一席重要的位置,那么该如何让LED显示屏的色度更均匀.合理呢,下面为大家总结出以下几点,供大家参考. LED全彩显示屏. ...
- MSP430:实时时钟-DS1302
/* * DS1302.h * * Created on: 2013-11-27 * Author: Allen */ #ifndef DS1302_H_ #define DS1302_H_ #inc ...
- 第2章 微信小程序的基础组件学习
小程序也可以用div+css进行排版. flex-direction排列方向,可以控制内部的成员的顺序,比如从左到右.从右到左.上下,纵向和横向. flex-wrap可以控制换行是如何去换行的,控制它 ...
- 开发第一个Template
TEMPLATE的静态变量,当时我们一句话就带过了.TEMPLATE静态变量下面有好几个键值对,把"BACKEND"后面的值改成我们想要用的模板引擎就可以了.我们项目使用Djang ...
- E20170603-ts
sanitize vt. 净化; 进行消毒; 使清洁; 审查; omission n. 遗漏; 疏忽; 省略,删节; [法] 不履行法律责任; separator n. 分离器,分离装置; 防胀 ...