在spark内部,rpc可以用来实现不同组件(Driver, executor,client)之间的远程交互。而在同一组件内,spark还有事件监听机制,如spark中各种指标的采集主要就是通过事件监听机制获取的。另外,本文也会spark中metrics的采集过程做一个简要分析。

1,spark事件监听机制

spark的事件监听主要是通过总线机制将不同的监听事件和 事件监听器连接起来的。总体设计如下图所示:

SparkListenerEvent具体包含的事件很多,如SparkListenerStageSubmitted,SparkListenerStageCompleted,SparkListenerTaskStart等等。

同理,SparkListenerInterface具体的实现也很多,如AppStatusListener,HeartbeatReceiver等。

下面以DAGScheduler中的JobSubmitted为例,梳理下整个过程:

1,在DAGScheduler处理JobSubmitted消息的函数在handleJobSubmitted中,在submitStage之前,会通过消息总线将SparkListenerJobStart监控事件发送到消息总线。

2,在LiveListenerBus内部,会将SparkListenerJobStart事件依次塞入到所有多列中(上图中的AsyncEventQueue中的Queue)。

3,与此同时,每个AsyncEventQueue中的Queue对应一个Thread,该线程将持续从队列中取出监听事件,将该事件发送给与该列队相连的所有事件监听器。

4,各个事件监听器根据不同的event类型,进行对应的处理。

以上就是事件响应处理的整体流程。

此外,还有一个问题是:监听器是怎么注册到消息总线内部的队列的?

以DAGScheduler中的ListenerBus为例,这个listenerbus是在SparkContext中初始化的,并且通过调用addToEventLogQueue,addToStatusQueue,addToManagementQueue,addToSharedQueue函数将各个监听器加入到不同的队列中去。

2, metrics实现机制

metrics实现机制和listener的机制有点类似,在spark的内部实现中,通过MetricsSystem连接Source和Sink。Source顾名思义就是收集数据的地方,而Sink则是采集数据落地的地方,Sink中一般而言会有一个Reporter周期性的将source采集的数据发送给sink,而MetricsSystem则可以简单理解为一个容器。

在SparkContext启动的时候,将会创建MetricSystem对象,并且在该对象启动的时候,将配置文件(默认metrics.properties)中的所有source和sink就注册到MetricsSystem中。对于Sink只能通过读取配置中所有sink,一次性注册。而对于Source,单独开放了接口,可以随时注册到MetricSystem中(在SparkContext中就有大量单独的source注册)。

对于source的具体实现,下面以BlockManagerSource为例简要阐述几点:

1,具体实现都实现了Source这个trait,实现Soure中定义的MetricRegistry和sourceName接口。

2,在Source中可以定义不同类型的metrics(Gauges,Counters,Meters,Histograms, Timers). 这些都是来自第三方的metrics库(https://github.com/dropwizard/metrics)。

3,在BlockManagerSource就定义了大量Gauge类型的metric。将name和value组成的kv值注册到MetricRegistry中。

而Sink中比较核心的就是有SchedulerReporter的对象(具体包括ConsoleReporter,CsvReporter,GraphiteReporter,JmxReporter),它会定期将source中采集的数据落到不同的目的地。

3, 小结

本文简要描述了spark中listener和metric的内部实现机制。metrics的实现了解有助于后续进一步对spark做数值类型的定制化监控。

spark Listener和metrics实现分析的更多相关文章

  1. Spark ListenerBus 和 MetricsSystem 体系分析

    转载自:https://yq.aliyun.com/articles/60196 摘要: Spark 事件体系的中枢是ListenerBus,由该类接受Event并且分发给各个Listener.Met ...

  2. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  3. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  4. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

  5. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  6. Spark RPC框架源码分析(三)Spark心跳机制分析

    一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark ...

  7. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  8. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  9. Apache 流框架 Flink,Spark Streaming,Storm对比分析(一)

    本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提 ...

随机推荐

  1. 用Delphi7 调用.NET 2.0的WebService 所要注意的问题(Document格式和UTF8编码)

    Delphi7 调用VS.NET 2005开发的基于.NET 2.0的WebService时发生了错误.查阅资料 http://www.community.borland.com/article/bo ...

  2. uCos临界区保护

    定义有三种method,stm32f4采用的是第三种:将当前中断的状态标志保存在一个局部变量cpu_sr中,然后再关闭中断.cpu_sr是一个局部变量,存在于所有需要关中断的函数中.注意到,在使用了该 ...

  3. 内核添加dts后,device和device_driver的match匹配的变动:通过compatible属性进行匹配【转】

    本文转载自:http://blog.csdn.net/ruanjianruanjianruan/article/details/61622053 内核添加dts后,device和device_driv ...

  4. 安全性测试--CSRF攻击

    一.CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSR ...

  5. 让 SyntaxHighlighter 3.x 支持 Lua 语法着色

    1. [代码]shBrushLua.js /** * SyntaxHighlighter * http://alexgorbatchev.com/SyntaxHighlighter * * Synta ...

  6. 【opencv】opencv在图片、视频嵌中英文字符的方法

    转自:http://www.cnblogs.com/hujingshuang/p/5119015.html 说明:本博文是根据前人已有的成果并结合自己的理解而成的.为了避免让读者感到繁琐,我将运用小学 ...

  7. 洛谷P3830 [SHOI2012]随机树——概率期望

    题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...

  8. 替换一个文件中的内容BAT

    @echo off setlocal enabledelayedexpansion set file=%1set "file=%file:"=%" for %%i in ...

  9. docker 远程连接设置

    Docker为C/S架构,服务端为docker daemon,客户端为docker.service. 默认不会监听任何端口,只能在本地使用docker客户端或者使用Docker API进行操作.要支持 ...

  10. ubuntu的NAT方式上网配置

    vm菜单栏虚拟机--->设置---->网络适配器---->勾选NAT方式 vi /etc/network/interfaces修改配置文件如下: auto loiface lo in ...