poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组
怎样求同余方程组?如:
x \equiv a_1 \pmod {m_1} \\
x \equiv a_2 \pmod {m_2} \\
\cdots \\
x \equiv a_n \pmod {m_n}
\end{cases}\]
不保证 \(m\) 两两互素?
两两合并!
比方说
x \equiv a_1 \pmod {m_1} \\
x \equiv a_2 \pmod {m_2} \\
\end{cases}\]
就是
x = m_1x_1+a_1\\
x = m_2x_2+a_2\\
\end{cases}\]
可以变形成
\]
拿扩欧搞掉这个方程。我们肯定想让 \(x\) 最小,那就让 \(x_1\) 最小,这样就求出了 \(x\) 的特解 \(x'\)。
显然, \(x\) 的通解是 \(x=x'+[m_1,m_2] \times t ,t \in \mathbb{Z}\)。
这也就很像是
\]
我们惊喜地发现两个方程变成了一个方程。一路做下去就好了。
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n;
ll a, r, m, aa, rr, x, y;
bool flag;
ll exgcd(ll a, ll b, ll &x, ll &y){
if(!b){
x = 1;
y = 0;
return a;
}
ll re=exgcd(b, a%b, x, y);
ll z=x;
x = y;
y = z - a / b * y;
return re;
}
int main(){
while(scanf("%d", &n)!=EOF){
flag = true;
n--;
scanf("%lld %lld", &aa, &rr);
while(n--){
scanf("%lld %lld", &a, &r);
if(!flag) continue;
ll gcd=exgcd(aa, a, x, y);
if((r-rr)%gcd) flag = false;
else
x = (((r-rr)/gcd*x)%(a/gcd)+a/gcd)%(a/gcd);
x = rr + x * aa;
rr = x;
aa = a/gcd*aa;
}
if(flag) printf("%lld\n", x);
else printf("-1\n");
}
return 0;
}
如果保证两两互素呢?那就中国剩余定理了。记 \(m =\prod_{i=1}^n m_i\),\(M_i=m/m_i\),\(t_i\) 是 \(M_i\) 在模 \(m_i\) 意义下的乘法逆元,则一个特解是 \(\sum_{i=1}^n a_iM_it_i\)。通解是 \(\sum_{i=1}^n a_iM_it_i + mk, k \in \mathbb{Z}\)。
证明:因为当 \(i \not =j\)时,\(m_j|M_i\),则 \(a_iM_it_i \equiv 0 \pmod {m_j}\),而 \(a_jM_jt_j \equiv a_j \pmod {m_j}\),证毕。
#include <iostream>
#include <cstdio>
using namespace std;
int a[15], cnt, mul, ans, x, y, dd;
const int m[]={0, 23, 28, 33};
int exgcd(int aa, int bb, int &x, int &y){
if(!bb){
x = 1;
y = 0;
return aa;
}
int re=exgcd(bb, aa%bb, x, y);
int z=x;
x = y;
y = z - aa / bb * y;
return re;
}
int ni(int aa, int bb){
int gcd=exgcd(aa, bb, x, y);
return (x%bb+bb)%bb;
}
int main(){
while(scanf("%d %d %d %d", &a[1], &a[2], &a[3], &dd)!=EOF){
mul = 1;
if(a[1]<0) break;
ans = 0;
for(int i=1; i<=3; i++)
a[i] %= m[i], mul *= m[i];
for(int i=1; i<=3; i++)
ans += a[i] * (mul/m[i])%mul * ni(mul/m[i], m[i])%mul;
ans -= dd;
ans = (ans%mul+mul)%mul;
if(!ans) ans += mul;
printf("Case %d: the next triple peak occurs in %d days.\n", ++cnt, ans);
}
return 0;
}
poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组的更多相关文章
- POJ 2891 Strange Way to Express Integers | exGcd解同余方程组
题面就是让你解同余方程组(模数不互质) 题解: 先考虑一下两个方程 x=r1 mod(m1) x=r2 mod (m2) 去掉mod x=r1+m1y1 ......1 x=r2+m2y2 . ...
- 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- POJ2891 - Strange Way to Express Integers(模线性方程组)
题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...
- POJ2891 Strange Way to Express Integers [中国剩余定理]
不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
随机推荐
- bzoj1878 [SDOI2009]HH的项链【莫队】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1878 以每个询问左端点所属的块的编号为第一关键字,右端点本身为第二关键字,排序,然后保利扫描 ...
- Codeforces 1144G(dp)
据说这题是种dp的套路?然后被我国红名神仙(南大Roundgod)贪心了,不过思路上非常相近了,故而可贪吧. 设的dp[i][0]是:如果把第i个数放在上升序列里了,那么下降序列结尾的那个最大是多少: ...
- Xml文档数据提取到Excel表中
近期,财务一位同事,吐槽:<某XX开票软件>导出数据文档只有Xml格式,竟然没有Excel文档,工作起来非常不方便,希望我想想办法.上图: 需求分析:Xml数据----> 提取到Da ...
- ios学习笔记 UITableView(纯代码) (一)
参考 “https://www.cnblogs.com/ai-developers/p/4557487.html” UITableViewCell 有一个代码重用 减少资源的浪费 参考 https: ...
- PL/SQL笔记(1)-流程控制,循环,异常,块
流程控制 1.If,then,else,elsif(不是elseif) ' then null; endif; 2.Case 简单case表达式: 搜索型Case表达式: 3.goto语句 begin ...
- Java断点续传(基于socket与RandomAccessFile的简单实现)
Java断点续传(基于socket与RandomAccessFile的简单实现) 这是一个简单的C/S架构,基本实现思路是将服务器注册至某个空闲端口用来监视并处理每个客户端的传输请求. 客户端先获得用 ...
- Springboot + Websocket + Sockjs + Stomp + Vue + Iview 实现java后端日志显示在前端web页面上
话不多说,看代码. 一.pom.xml 引入spring boot websocket依赖 <dependency> <groupId>org.springframework. ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- vue项目中快捷语法糖
1.Vue.js是渐进式框架,采用自底向上增量开发的设计基于MVVM思想. 2.Vue 完全有能力驱动采用单文件组件和Vue生态系统支持的库开发的复杂单页应用. 3.Vue.js 的目标是通过尽可能简 ...
- ios水果风暴游戏源码项目下载
这是一款ios水果风暴游戏源码下载,介绍给大家一下,喜欢的朋友可以下载学习一下吧.应用介绍:这是一个以获得高分和挑战更高难度为目的的游戏.游戏中有九种不同的卡通水果,您可以交换屏幕中两个相邻水果的位置 ...