题目链接

设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果。
k有三种情况。
k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多的苹果。
k=2:我只考虑子树的右叉,不考虑子树的左叉,此时子树能保留的最多的苹果。
k=3:我既考虑子树的左叉,又考虑子树的右叉,此时子树能保留的最多的苹果。
这样状态转移方程就出来了。
f[i][j][1]=max(f[i][j][1],f[leftson[i]][j-1][3]+val[i][leftson[i]])
f[i][j][2]=max(f[i][j][2],f[rightson[i]][j-1][3]+val[i][rightson[i]])
f[i][j][3]=max(f[i][j][3],f[i][v][1]+f[i][j-v][2]) 其中v从0到j枚举。
最后f[1][q][3]就是最终的答案。
注意记忆化搜索。我因为这个T了四次。

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int next,to,val;
}edge[];
int head[],num;
int father[];
int size[];
inline void add(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
} void find(int x,int fa){
father[x]=fa;
size[x]=;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(to!=fa){
find(to,x);
size[x]+=size[to];
}
}
} int f[][][]; void dfs(int x,int s){
if(size[x]==||f[x][s][]) return;
int cnt=;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(to==father[x]) continue;
cnt++;
for(int v=;v<size[to]&&v<s;++v){
dfs(to,v);
f[x][v+][cnt]=f[to][v][]+edge[i].val;
}
}
for(int v=;v<=s;++v)
f[x][s][]=max(f[x][s][],f[x][v][]+f[x][s-v][]);
return;
} int main(){
int n=read(),q=read();
for(int i=;i<n;++i){
int from=read(),to=read(),val=read();
add(from,to,val);
add(to,from,val);
}
find(,);
dfs(,q);
printf("%d",f[][q][]);
return ;
}

【Luogu】P2015二叉苹果树(DP,DFS)的更多相关文章

  1. luogu P2015 二叉苹果树

    嘟嘟嘟 这应该算一道树形背包吧,虽然我还是分不太清树形背包和树形dp的区别…… 首先dp[i][u][j] 表示在u的前 i 棵子树中,留了 j 条树枝时最大的苹果数量,而且根据题目描述,这些留下的树 ...

  2. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  3. P2015 二叉苹果树

    P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...

  4. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  5. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  6. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  7. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  8. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  9. 洛谷P2015 二叉苹果树

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

随机推荐

  1. node.js之Windows 系统下设置Nodejs NPM全局路径

    node.js 0.10 版本下修改全局路径: npm config set cache "D:\nodejs\node_cache" npm config set prefix ...

  2. spark-wordcount-sample算子测试

    import org.apache.spark.{SparkConf, SparkContext} object radomSampleU { def main(args: Array[String] ...

  3. {g2o}Installation Notes:ccmake

    main reference: http://www.cnblogs.com/gaoxiang12/p/3776107.html "注意libqglviewer-qt4-dev只在ubunt ...

  4. 闭包和OC的block的本质

    “闭包” 一词来源于以下两者的结合:要执行的代码块(由于自由变量被包含在代码块中,这些自由变量以及它们引用的对象没有被释放)和为自由变量提供绑定的计算环境(作用域). http://blog.csdn ...

  5. 团队作业-Beta冲刺第二天

    这个作业属于哪个课程 <https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1> 这个作业要求在哪里 <https ...

  6. Synchronized关键字整理

    Synchronized关键字整理 作用:能够保证在同一时刻最多只有一个线程执行该段代码,以达到保证并发安全效果. 两个用法: 1.对象锁: 包括方法锁(默认锁对象为this当前实例对象)和同步代码块 ...

  7. rpn网络结构再分析

    这是rpn网络train阶段的网络结构图 rpn_conv1之前的网络是特征提取层,也是和fast rcnn共享的层.rpn_conv1是一层1*1的卷积,这一层是单独为rpn网络多提取一层特征,这一 ...

  8. Hello World投票以太坊Dapp教程-Part1

    参考资料:https://medium.com/@mvmurthy/full-stack-hello-world-voting-ethereum-dapp-tutorial-part-1-40d2d0 ...

  9. shell脚本,编程题练习。

    题目是:将 文件file为 b+b+b+b+b+b+b+b 变为 b+b=b+b=b+b=b+b 解答方法如下:

  10. java数字金额转化为中文金额

    public static String digitUppercase(double n){String fraction[] = {"角", "分"};Str ...