UVA 11246 - K-Multiple Free set

题目链接

题意:一个{1..n}的集合。求一个子集合。使得元素个数最多,而且不存在有两个元素x1 * k = x2,求出最多的元素个数是多少

思路:推理一下,

一開始n个

先要删除k倍的,删除为{k, 2k, 3k, 4k, 5k, 6k...},会删掉多余的k^2,因此在加回k^2倍的数

然后如今集合中会出现情况的仅仅有k^2的倍数,因此对k^2倍的数字看成一个新集合重复做这个操作就可以。因此最后答案为n - n / k + n / (k ^ 2) - n / (k ^ 3) + n / (k ^ 4)...

代码:

#include <stdio.h>
#include <string.h> int t, n, k; int solve(int n, int k) {
int sign = 1, ans = 0;
while (n) {
ans += sign * n;
n /= k;
sign = - sign;
}
return ans;
} int main() {
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &k);
printf("%d\n", solve(n, k));
}
return 0;
}

UVA 11246 - K-Multiple Free set(数论推理)的更多相关文章

  1. uva 11246 - K-Multiple Free set(数论)

    题目链接:uva 11246 - K-Multiple Free set 题目大意:给定n,k.求一个元素不大于n的子集,要求该子集的元素尽量多,而且不含两个数满足a∗k=b. 解题思路:容斥原理.f ...

  2. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  3. UVA 10831 - Gerg&#39;s Cake(数论)

    UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...

  4. UVA 12103 - Leonardo&#39;s Notebook(数论置换群)

    UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...

  5. UVa 11997 K Smallest Sums - 优先队列

    题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...

  6. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11997 K Smallest Sums 优先队列 多路合并

    vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...

  8. UVa 11997 K Smallest Sums 优先队列&amp;&amp;打有序表&amp;&amp;归并

    UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...

  9. 紫书 例题 10-26 UVa 11440(欧拉函数+数论)

    这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...

随机推荐

  1. 算法竞赛中c++一些需要注意的错误

    1. 关于精度: 取整 除法取整: (除数为正)被除数为正时系统除法为向下取整,被除数为负时系统除法为向上取整. 向上取整(被除数非负,除数为正): 一般写法(有bug): int cal(int x ...

  2. Java中File类的使用介绍

    1.创建File对象的几种方式 import java.io.File; public class MyFile { public static void main(String[] args) { ...

  3. PAT Basic 1070

    1070 结绳 给定一段一段的绳子,你需要把它们串成一条绳.每次串连的时候,是把两段绳子对折,再如下图所示套接在一起.这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连.每次串连后,原 ...

  4. python的re模块常用方法

    正则表达式模式 模式字符串使用特殊的语法来表示一个正则表达式: 字母和数字表示他们自身.一个正则表达式模式中的字母和数字匹配同样的字符串. 多数字母和数字前加一个反斜杠时会拥有不同的含义. 标点符号只 ...

  5. Centos 6.5升级openssh到7.5p1版本

    centos6自带的ssh版本较低,存在高危漏洞,目前部分服务器需要升级到最新版本(目前是7.5p1). 注:升级ssh存在一定的危险性,一旦不成功可能无法通过远程连接到系统,因此在升级之前最好有远程 ...

  6. n&(n-1)的用途

    最近做LeetCode上面的题目,发现很多题目都用到了n&(n-1).感觉真是神通广大,下面就目前所看到的一些用途总结一下: 1,求一个int类型数是否为2的幂 当n=4时,二进制为:0100 ...

  7. jenkins之Tomcat7+jdk1.7+jenkins

    目的 在开发中,需要经常频繁的对测试服务器进行部署,而且在多人协同中开发经常遇到的问题就是别人更新了他的代码,而你去更新你的代码时并没有更新到别人的代码,导致测试环境的代码不是最新,当然这个问题也好解 ...

  8. Access denied for user ''@'localhost' to database 'mysql'

    ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'mysql'   在centos下安装好了mysql,用r ...

  9. [luoguP3608] [USACO17JAN]Balanced Photo平衡的照片(树状数组 + 离散化)

    传送门 树状数组裸题 #include <cstdio> #include <cstring> #include <iostream> #include <a ...

  10. Vue && Angular 双向绑定检测不到对象属性的添加和删除

    由于ES5的限制 Vue  && Angular 双向绑定检测不到对象属性的添加和删除  还有数组增加索引.这些改变不会触发change事件.Vue是因为实例化的时候已经把各个属性都s ...