UVA 11246 - K-Multiple Free set

题目链接

题意:一个{1..n}的集合。求一个子集合。使得元素个数最多,而且不存在有两个元素x1 * k = x2,求出最多的元素个数是多少

思路:推理一下,

一開始n个

先要删除k倍的,删除为{k, 2k, 3k, 4k, 5k, 6k...},会删掉多余的k^2,因此在加回k^2倍的数

然后如今集合中会出现情况的仅仅有k^2的倍数,因此对k^2倍的数字看成一个新集合重复做这个操作就可以。因此最后答案为n - n / k + n / (k ^ 2) - n / (k ^ 3) + n / (k ^ 4)...

代码:

#include <stdio.h>
#include <string.h> int t, n, k; int solve(int n, int k) {
int sign = 1, ans = 0;
while (n) {
ans += sign * n;
n /= k;
sign = - sign;
}
return ans;
} int main() {
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &k);
printf("%d\n", solve(n, k));
}
return 0;
}

UVA 11246 - K-Multiple Free set(数论推理)的更多相关文章

  1. uva 11246 - K-Multiple Free set(数论)

    题目链接:uva 11246 - K-Multiple Free set 题目大意:给定n,k.求一个元素不大于n的子集,要求该子集的元素尽量多,而且不含两个数满足a∗k=b. 解题思路:容斥原理.f ...

  2. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  3. UVA 10831 - Gerg&#39;s Cake(数论)

    UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...

  4. UVA 12103 - Leonardo&#39;s Notebook(数论置换群)

    UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...

  5. UVa 11997 K Smallest Sums - 优先队列

    题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...

  6. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11997 K Smallest Sums 优先队列 多路合并

    vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...

  8. UVa 11997 K Smallest Sums 优先队列&amp;&amp;打有序表&amp;&amp;归并

    UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...

  9. 紫书 例题 10-26 UVa 11440(欧拉函数+数论)

    这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...

随机推荐

  1. CSS 媒体查询 响应式

    媒体查询 从 CSS 版本 2 开始,就可以通过媒体类型在 CSS 中获得媒体支持.如果您曾经使用过打印样式表,那么您可能已经使用过媒体类型.清单 1 展示了一个示例. 清单 1. 使用媒体类型 &l ...

  2. Wp8 读取手机信息

    /// <summary> /// 获取系统信息 /// </summary> private void GetSystemInfo() { lblMsg.Text = str ...

  3. Codeforces Round #407 (Div. 2) B+C!

    B. Masha and geometric depression 被这个题坑了一下午,感觉很水,一直WA在第14组,我那个气啊,结束后发现第14组有点小争议,于是找出题人解释,然后出题人甩给了我一段 ...

  4. iOS学习笔记04-视图切换

    一.视图切换 UITabBarController (分页控制器) - 平行管理视图 UINavigationController (导航控制器) - 压栈出栈管理视图 模态窗口 二.UITabBar ...

  5. [luoguP3159] [CQOI2012]交换棋子(最小费用最大流)

    传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: ...

  6. NOI2015 荷马史诗 【k-哈夫曼树】

    题目 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由<奥德赛> ...

  7. bzoj1225 [HNOI2001] 求正整数

    1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Statu ...

  8. bzoj 4401 块的计数 思想+模拟+贪心

    块的计数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 455  Solved: 261[Submit][Status][Discuss] Descr ...

  9. Virtual Box 安装过程(卸载Vmware后)

    VirtualBox安装前的操作:(或许某些操作不一定有用,但是我是这么做下来的,最后也安装成功了) 步骤一:停止之前安装的vmware的所有服务(如果之前没有安装过虚拟机软件,无需做此操作)VMwa ...

  10. ElasticSearch中Date

    ElasticSearch中有时会想要通过索引日期来筛选查询的数据,此时就需要用到日期数学表达式. 比如现在的时间是2024年3月22日中午12点.utc 注意,如果是中国的时间需要加上8个小时! 表 ...