数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值。

好题!看起来水水的实际易错!

显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中间跑呢!那就可以拍个序然后设计dp状态了,一个区间dp,f[i,j,0/1]表示走了区间i~j,最后落在左/右端点。

一个小技巧是把p算成一个点,初始化时之后p这个状态为0,其他都inf。那么问题来了!

方法一:记到状态的时间t[i,j,0/1],那么,相应更新t,其他同理。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,p;
#define maxn 1011
int a[maxn],f[maxn][maxn][],t[maxn][maxn][];
const int inf=0x3f3f3f3f;
int min(int a,int b) {return a<b?a:b;}
int main()
{
scanf("%d%d",&n,&p);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
sort(a+,a++n);
for (int i=;i<=n;i++) f[i][i][]=f[i][i][]=t[i][i][]=t[i][i][]=inf;
a[n+]=inf;int pos;
for (pos=;pos<=n+;pos++) if (a[pos]>p) break;
if (pos==n+) t[n][n][]=t[n][n][]=f[n][n][]=f[n][n][]=p-a[n];
else if (pos==) t[][][]=t[][][]=f[][][]=f[][][]=a[]-p;
else f[pos][pos][]=f[pos][pos][]=a[pos]-p,f[pos-][pos-][]=f[pos-][pos-][]=p-a[pos-],
t[pos][pos][]=t[pos][pos][]=a[pos]-p,t[pos-][pos-][]=t[pos-][pos-][]=p-a[pos-];
for (int len=;len<n;len++)
for (int i=;i<=n-len;i++)
{
const int j=i+len;
if (f[i+][j][]+t[i+][j][]+a[i+]-a[i]<f[i+][j][]+t[i+][j][]+a[j]-a[i])
{
t[i][j][]=t[i+][j][]+a[i+]-a[i];
f[i][j][]=f[i+][j][]+t[i][j][];
}
else
{
t[i][j][]=t[i+][j][]+a[j]-a[i];
f[i][j][]=f[i+][j][]+t[i][j][];
}
if (f[i][j-][]+t[i][j-][]+a[j]-a[i]<f[i][j-][]+t[i][j-][]+a[j]-a[j-])
{
t[i][j][]=t[i][j-][]+a[j]-a[i];
f[i][j][]=f[i][j-][]+t[i][j][];
}
else
{
t[i][j][]=t[i][j-][]+a[j]-a[j-];
f[i][j][]=f[i][j-][]+t[i][j][];
}
f[i][j][]=min(f[i][j][],inf);
f[i][j][]=min(f[i][j][],inf);
}
printf("%d\n",min(f[][n][],f[][n][]));
return ;
}

错误!递推式不成立,没有考虑当前决策对后续状态的影响。错误样例?自己找个标程对拍吧!

方法二:直接把状态对后面的影响算出来,,保证了无后效性。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,p;
#define maxn 1011
int a[maxn],f[maxn][maxn][];
const int inf=0x3f3f3f3f;
int min(int a,int b) {return a<b?a:b;}
int main()
{
scanf("%d%d",&n,&p);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
a[++n]=p;
sort(a+,a++n);
for (int i=;i<=n;i++)
{
if (a[i]!=p) f[i][i][]=f[i][i][]=inf;
else f[i][i][]=f[i][i][]=;
}
for (int len=;len<n;len++)
for (int i=;i<=n-len;i++)
{
const int j=i+len;
f[i][j][]=min(inf,min(f[i+][j][]+(n-j+i)*(a[i+]-a[i]),f[i+][j][]+(n-j+i)*(a[j]-a[i])));
f[i][j][]=min(inf,min(f[i][j-][]+(n-j+i)*(a[j]-a[i]),f[i][j-][]+(n-j+i)*(a[j]-a[j-])));
}
printf("%d\n",min(f[][n][],f[][n][]));
return ;
}

此题在九月份错过一次。

BZOJ1694一样哦!然而又错了,一看原题一激动忘排序了。

BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草的更多相关文章

  1. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  2. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  3. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  4. 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp

    题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...

  5. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  6. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  7. 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)

    传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...

  8. [USACO2005 nov] Grazing on the Run【区间Dp】

    Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

随机推荐

  1. AJPFX总结之Socket编程

    一.Socket简介 Socket是进程通讯的一种方式,即调用这个网络库的一些API函数实现分布在不同主机的相关进程之间的数据交换. 几个定义: (1)IP地址:即依照TCP/IP协议分配给本地主机的 ...

  2. P1309 瑞士轮 未完成 60

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  3. DOM编程练习(慕课网题目)

    编程练习 制作一个表格,显示班级的学生信息. 要求: 1. 鼠标移到不同行上时背景色改为色值为 #f2f2f2,移开鼠标时则恢复为原背景色 #fff 2. 点击添加按钮,能动态在最后添加一行 3. 点 ...

  4. linux下自定义pid实现任意数据采集

    当你需要采集特殊的数据,而不满足于现有的你所知的数据模版时,自定义oid将是你必须而且非常好的解决方式. oid是snmp服务器为每条系统信息提供的唯一标识符,如果不能很好理解snmp服务的话,可以将 ...

  5. linux系统中文件的几种类型

    Linux系统是以文件的形式来进行管理的.Linux文件类型常见的有:普通文件.目录.字符设备文件.块设备文件.符号链接文件等,如果想了解这方面知识的弟兄,就进来了解了解. Linux系统不同于win ...

  6. TFS强制删除离职人员签出锁定项的方法(转)

      项目组一哥们走的时候以独占方式迁出了文件,现在其他人都无法修改,管理员似乎也无法将文件解除.经过摸索,找到了一种暴力的方法——直接改TFS数据库.虽然暴力,却能实实在在地解决这个问题. 步骤: 1 ...

  7. (转)Spring的概述

    http://blog.csdn.net/yerenyuan_pku/article/details/69663685 Spring的概述 什么是Spring 据度娘所载: Spring是一个开源框架 ...

  8. CocosCreator工程内的命名

    命名结构总体的命名结构遵循以下格式 前缀-内容-尾缀 - 前缀:用来定义node的属性- 内容:node的名字- 尾缀:序列或状态1231. 前缀说明:在开始的时候定义/声明这个节点的属性前缀可以是一 ...

  9. 【整理】 vue-cli 打包后显示favicon.ico小图标

    vue-cli 打包后显示favicon.ico小图标 https://www.cnblogs.com/mmzuo-798/p/9285013.html

  10. 连接MySQL错误“plugin caching_sha2_password could not be loaded”的解决办法

    MySQL新版默认使用caching_sha2_password作为身份验证插件,而旧版是使用mysql_native_password.当连接MySQL时报错“plugin caching_sha2 ...