数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值。

好题!看起来水水的实际易错!

显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中间跑呢!那就可以拍个序然后设计dp状态了,一个区间dp,f[i,j,0/1]表示走了区间i~j,最后落在左/右端点。

一个小技巧是把p算成一个点,初始化时之后p这个状态为0,其他都inf。那么问题来了!

方法一:记到状态的时间t[i,j,0/1],那么,相应更新t,其他同理。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,p;
#define maxn 1011
int a[maxn],f[maxn][maxn][],t[maxn][maxn][];
const int inf=0x3f3f3f3f;
int min(int a,int b) {return a<b?a:b;}
int main()
{
scanf("%d%d",&n,&p);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
sort(a+,a++n);
for (int i=;i<=n;i++) f[i][i][]=f[i][i][]=t[i][i][]=t[i][i][]=inf;
a[n+]=inf;int pos;
for (pos=;pos<=n+;pos++) if (a[pos]>p) break;
if (pos==n+) t[n][n][]=t[n][n][]=f[n][n][]=f[n][n][]=p-a[n];
else if (pos==) t[][][]=t[][][]=f[][][]=f[][][]=a[]-p;
else f[pos][pos][]=f[pos][pos][]=a[pos]-p,f[pos-][pos-][]=f[pos-][pos-][]=p-a[pos-],
t[pos][pos][]=t[pos][pos][]=a[pos]-p,t[pos-][pos-][]=t[pos-][pos-][]=p-a[pos-];
for (int len=;len<n;len++)
for (int i=;i<=n-len;i++)
{
const int j=i+len;
if (f[i+][j][]+t[i+][j][]+a[i+]-a[i]<f[i+][j][]+t[i+][j][]+a[j]-a[i])
{
t[i][j][]=t[i+][j][]+a[i+]-a[i];
f[i][j][]=f[i+][j][]+t[i][j][];
}
else
{
t[i][j][]=t[i+][j][]+a[j]-a[i];
f[i][j][]=f[i+][j][]+t[i][j][];
}
if (f[i][j-][]+t[i][j-][]+a[j]-a[i]<f[i][j-][]+t[i][j-][]+a[j]-a[j-])
{
t[i][j][]=t[i][j-][]+a[j]-a[i];
f[i][j][]=f[i][j-][]+t[i][j][];
}
else
{
t[i][j][]=t[i][j-][]+a[j]-a[j-];
f[i][j][]=f[i][j-][]+t[i][j][];
}
f[i][j][]=min(f[i][j][],inf);
f[i][j][]=min(f[i][j][],inf);
}
printf("%d\n",min(f[][n][],f[][n][]));
return ;
}

错误!递推式不成立,没有考虑当前决策对后续状态的影响。错误样例?自己找个标程对拍吧!

方法二:直接把状态对后面的影响算出来,,保证了无后效性。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,p;
#define maxn 1011
int a[maxn],f[maxn][maxn][];
const int inf=0x3f3f3f3f;
int min(int a,int b) {return a<b?a:b;}
int main()
{
scanf("%d%d",&n,&p);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
a[++n]=p;
sort(a+,a++n);
for (int i=;i<=n;i++)
{
if (a[i]!=p) f[i][i][]=f[i][i][]=inf;
else f[i][i][]=f[i][i][]=;
}
for (int len=;len<n;len++)
for (int i=;i<=n-len;i++)
{
const int j=i+len;
f[i][j][]=min(inf,min(f[i+][j][]+(n-j+i)*(a[i+]-a[i]),f[i+][j][]+(n-j+i)*(a[j]-a[i])));
f[i][j][]=min(inf,min(f[i][j-][]+(n-j+i)*(a[j]-a[i]),f[i][j-][]+(n-j+i)*(a[j]-a[j-])));
}
printf("%d\n",min(f[][n][],f[][n][]));
return ;
}

此题在九月份错过一次。

BZOJ1694一样哦!然而又错了,一看原题一激动忘排序了。

BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草的更多相关文章

  1. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  2. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  3. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  4. 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp

    题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...

  5. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  6. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  7. 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)

    传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...

  8. [USACO2005 nov] Grazing on the Run【区间Dp】

    Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

随机推荐

  1. kde framework概述(KDE Framework译文)

    KDE Frameworks 基于QT框架,提供简单实用的类(例如那些KCoreAddons里的类)去为桌面应用的日常需要整合出解决方案(例如KNewStuff用于在应用中获取可下载的附加内容,或者那 ...

  2. HttpURLConnection读取http信息

    废话不多说,直接上code. package mytest; import java.io.BufferedReader; import java.io.IOException; import jav ...

  3. 入门Promise的用法

    new Promise(function(resolve,reject){ resolve(); //数据处理完成 reject(); //数据处理出错 }).then(function A(){ / ...

  4. codevs 1219 骑士游历 1997年

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 设有一个n*m的棋盘(2≤n≤50,2≤m≤50),如下图,在棋盘上有一个中国象 ...

  5. 响应式布局(CSS3弹性盒flex布局模型)

    传统的布局方式都是基于盒模型的 利用display.position.float来布局有一定局限性 比如说实现自适应垂直居中 随着响应式布局的流行,CSS3引入了更加灵活的弹性布局模型 flex弹性布 ...

  6. Redux 和 mobx的区别

    Redux: Redux将数据保存在单一store中,Mobx将数据保存在分散的多个store中 Redux需要手动处理变化后的操作,Mobx使用observable保存数据,数据变化后自动处理响应的 ...

  7. Open Cascade创建自己的MFC文档程序

    项目初始设置在Visual studio中创建一个单文档MFC项目(本例以MFCTest为名称): 在项目属性的VC++页面设置包含目录.库目录,在链接器的输入中添加OCC库目录下的所有.lib文件名 ...

  8. “xxxx”表 - 无法修改表。 不能将值 NULL 插入列 'xxxx'

    问题 向已有表增加字段 执行下面sql,sql执行增加两个字段分别: articleTitle 正标题 [nvarchar](200) articleSubTitle 副标题 [nvarchar](2 ...

  9. c++的if语句中的110为什么不等于110?

    从上图可以看出,当表达式1.1*x被直接放进if的判断括号中时1.1*x不等于y,但是将1.1*x赋值给z时,z与y相等,这是为什么?(以下为不等价时的代码) #include<stdio.h& ...

  10. 天梯赛L1 题解

    L1-001 Hello World (5 分) 这道超级简单的题目没有任何输入. 你只需要在一行中输出著名短句“Hello World!”就可以了. AC代码:(直接输出记性) #include & ...