POJ 1463 Strategic game(树形DP入门)
题意:
给定一棵树, 问最少要占据多少个点才能守护所有边
分析:
树形DP枚举每个点放与不放
树形DP:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ;
int dp[maxn][];
//用DP[i][0]来表示该点没有放兵,以这个点为根的子树所需的最少兵数。
//用DP[i][1]来表示该点放兵,以这个点为根的子树所需的最少兵数。 int father[maxn]; //记录每个节点父亲
int vis[maxn];
int N;
int root = ;
int dfs(int node){
dp[node][] = , dp[node][] = ;
vis[node] = ;
for(int i = ; i < N; i++){
if(father[i] == node && !vis[i]){
dfs(i);
dp[node][] += dp[i][]; //父亲不放, 儿子必须放
dp[node][] += min(dp[i][], dp[i][]);//父亲节点放了, 取儿子节点的最小值
}
}
return min(dp[node][], dp[node][]);
}
int main() {
while(~scanf("%d", &N)) {
memset(father, -, sizeof(father));
memset(dp, , sizeof(dp));
memset(vis, , sizeof(vis));
int root = -;
for(int i = ; i < N; i++){
int u ,v ,k;
scanf("%d:(%d)", &u, &k);
if(root == -) root = u; //the first node is root;
for(int j = ; j < k; j++){
scanf("%d", &v);
father[v] = u;
}
} cout << dfs(root) << "\n";
}
return ;
}
POJ 1463 Strategic game(树形DP入门)的更多相关文章
- Strategic game(树形DP入门)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:一棵树,要放置哨兵,要求最少放置多少哨兵能监视到所有的结点 题目分析: 放置哨兵无非两 ...
- poj 2342 Anniversary party 树形DP入门
题目链接:http://poj.org/problem?id=2342 题意:一家公司有1 <= N <= 6 000个职工,现要组织一些职工参加晚会,要求每个职工和其顶头上司不能同时参加 ...
- POJ 2342 树形DP入门题
有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...
- 树形dp 入门
今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...
- 树形DP入门详解+题目推荐
树形DP.这是个什么东西?为什么叫这个名字?跟其他DP有什么区别? 相信很多初学者在刚刚接触一种新思想的时候都会有这种问题. 没错,树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上. 既 ...
- poj 2324 Anniversary party(树形DP)
/*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...
- [poj2342]Anniversary party树形dp入门
题意:选出不含直接上下司关系的最大价值. 解题关键:树形dp入门题,注意怎么找出根节点,运用了并查集的思想. 转移方程:dp[i][1]+=dp[j][0];/i是j的子树 dp[i][0]+=max ...
- LuoGu-P1122 最大子树和+树形dp入门
传送门 题意:在一个树上,每个加点都有一个值,求最大的子树和. 思路:据说是树形dp入门. 用dfs,跑一边,回溯的时候求和,若和为负数,则减掉,下次不记录这个节点. #include <ios ...
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...
随机推荐
- Homebrew 常用命令
Homebrew 常用命令 Homebrew 介绍 Homebrew也称brew,macOS下基于命令行的最强大软件包管理工具,使用Ruby语言开发.类似于CentOS的yum或者Ubuntu的apt ...
- AtCoder - 2153 An Ordinary Game list模拟 || 博弈
http://abc048.contest.atcoder.jp/tasks/arc064_b?lang=en 在vj里面用list模拟水过去了,然后感觉vj不靠谱,上atcoder交,果然tle 我 ...
- js数组去重的三种方式的比较
做前端的,一般实现功能是主要的,但是重中之重却是在做到功能完善的情况下提高性能. 1.遍历数组法 实现的思路:构建一个新的数组存放结果,for循环中每次从原数组中取出一个元素,用这个元素循环与结果数组 ...
- 【前端】Html5浏览器缓存 sessionStorage 与 localStorage
一.sessionStorage: 浏览关闭会话结束就被清除:(不能跨页面) localStorage:永久保存: 二.使用 var storage = window.sessionStorage; ...
- asp.net MVC中实现调取web api
public ActionResult Index(string city) { if (string.IsNullOrEmpty(city)) { city = "上海"; } ...
- ArcGIS Desktop新建postgresql版sde(10.4.1)的连接
假设连接到的sde数据库是pg数据库,其他参数包括: ip:10.0.0.8 数据库:sde1 用户:sde 密码:sde 打开catalog,新建数据库连接 按如下输入数据库连接参数 红框1是数据库 ...
- SqlSessionFactory
源码: public interface SqlSessionFactory { SqlSession openSession(); SqlSession openSession(boolean va ...
- 求N个数的最大公约数
使用 “辗转相除法” 计算2个数的最大公因数: int GCD_2(int nNum1, int nNum2) { if (nNum1 > nNum2) { nNum1 = nNum1 ^ nN ...
- python大文件读取
python大文件读取 https://stackoverflow.com/questions/8009882/how-to-read-a-large-file-line-by-line-in-pyt ...
- iOS端架构、基本组成与使用说明
一. app整体描述 app的描述:需求文档+接口文档+程序架构. 说明:新入手的开发人员必须拿到这三个说明文档才能整体了解app功能. 二.app架构描述 1.架构视图 2.分层结构说明 [1] a ...