Description

Input

第1行,包含三个整数。n,L,R。
第2行n个数,代表a[1..n]。

Output

仅1行,表示询问答案。
如果答案是整数,就输出整数;否则,输出既约分数“P/Q”来表示。

Sample Input

5 3 4
3 1 2 4 5

Sample Output

7/2

HINT
1≤L≤R≤n≤10^5,0≤ai≤10^9,保证问题有解,数据随机生成

 
 
首先这是一个分数规划,于是我们得二分,设答案为mid,那么原数列变成a[i]-mid,然后就是要找一段使得区间和大于0
前缀和可以先预处理,然后找到满足s[j]<s[i]且i<j的j,发现满足条件的j中s[j]越小越好,于是用单调队列维护
然后得保证选的数的个数是偶数,于是开两个单调队列,分别维护位置为奇数和偶数的
 //minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int n,m,L,R,h1,h2,t1,t2;ll ans1,ans2,g,A[N<<],S[N<<];
double v[N<<],s[N<<];int q1[N<<],q2[N<<];
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
bool check(double x){
for(int i=;i<=m;++i) v[i]=A[i]-x,s[i]=s[i-]+v[i];
h1=h2=t1=,t2=,q1[]=;
for(int i=L;i<=m;++i){
while(h1<=t1&&q1[h1]<i-R) ++h1;
while(h2<=t2&&q2[h2]<i-R) ++h2;
if(!(i&)&&h1<=t1&&s[q1[h1]]<=s[i]){
ans1=S[i]-S[q1[h1]],ans2=i-q1[h1],g=gcd(ans1,ans2),ans1/=g,ans2/=g;return ;
}
if((i&)&&h2<=t2&&s[q2[h2]]<=s[i]){
ans1=S[i]-S[q2[h2]],ans2=i-q2[h2],g=gcd(ans1,ans2),ans1/=g,ans2/=g;return ;
}
if(!((i-L+)&)){
while(h1<=t1&&s[q1[t1]]>=s[i-L+]) --t1;
q1[++t1]=i-L+;
}else{
while(h2<=t2&&s[q2[t2]]>=s[i-L+]) --t2;
q2[++t2]=i-L+;
}
}
return ;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),L=read(),R=read(),m=n<<;
double l=<<,r=;
for(int i=;i<=n;++i) A[i]=A[i+n]=read(),cmin(l,(double)A[i]),cmax(r,(double)A[i]);
for(int i=;i<=m;i++) S[i]=S[i-]+A[i];
for(int i=;i<=;++i){
double mid=(l+r)/;
check(mid)?l=mid:r=mid;
}
printf("%lld/%lld",ans1,ans2);
return ;
}

bzoj3316: JC loves Mkk(单调队列+分数规划)的更多相关文章

  1. bzoj3316 JC loves Mkk题解

    3316: JC loves Mkk Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 979  Solved: 316[Submit][Status][Di ...

  2. bzoj3316: JC loves Mkk

    Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整数,就输出整数:否则,输出既约分数“P/Q”来 ...

  3. 【BZOJ3316】JC loves Mkk 分数规划+单调队列

    [BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...

  4. 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列

    单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...

  5. 【BZOJ 1758】【WC 2010】重建计划 分数规划+点分治+单调队列

    一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的 ...

  6. BZOJ1758: [Wc2010]重建计划(01分数规划+点分治+单调队列)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, ...

  7. BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列

    BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...

  8. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

  9. [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]

    题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...

随机推荐

  1. CodeForces 597A Divisibility

    水题. #include<iostream> #include<cstring> #include<cmath> #include<queue> #in ...

  2. POJ 2192 【DP】

    题意: 给三个字符串,判断前两个在相对顺序不变的情况下是否可以组成第三个字符串. 思路: 先说屌丝: dp[i][j]代表1串的前i个和2串的前j个字符在3串的前i+j个字符中最多能够组合出几个字符. ...

  3. JVM(零):走入JVM

    JVM(零):走入JVM 本系列主要讲述JVM相关知识,作为本系列的第一篇文章,本文从Java为什么是一个跨平台的语音开始介绍,逐步引入Java虚拟机的概念,并给出一个JVM相关知识图谱,可以让读者从 ...

  4. Exception: Could not bind to 0.0.0.0:8080 after trying for 30 seconds

    swift@vincent-virtual-machine /etc/swift $ sudo swift-init main restart Signal proxy-server pid: sig ...

  5. 黑黛增发罗林川:如何三年开1000家连锁店?_深度案例_i黑马

    黑黛增发罗林川:如何三年开1000家连锁店?_深度案例_i黑马 黑黛增发

  6. [开源]OSharpNS - .net core 快速开发框架 - 简介

    什么是OSharp OSharpNS全称OSharp Framework with .NetStandard2.0,是一个基于.NetStandard2.0开发的一个.NetCore快速开发框架.这个 ...

  7. Codeforces554E:Love Triangles

    There are many anime that are about "love triangles": Alice loves Bob, and Charlie loves B ...

  8. Spring4.0MVC学习资料,注解自己主动扫描bean,自己主动注入bean(二)

    Spring4.0的新特性我们在上一章已经介绍过了. 包含它对jdk8的支持,Groovy Bean Definition DSL的支持.核心容器功能的改进,Web开发改进.測试框架改进等等.这张我们 ...

  9. HDU 1272: 小希的迷宫(并查集)

    小希的迷宫 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  10. LoadRunner系列之—-04 录制基于https协议的脚本

    实际性能测试过程中,有些需录制脚本的页面或接口是基于https协议的,按原来方法录制脚本,录完了脚本是空的.为解决这个问题,第一步了解https协议的具体实现,这块网上资料很多,可参考页面下方参考资料 ...