Eagle (AKA Mohamed Ahmed) lives in a city consists of n intersections connected by n-1 roads, in a way that can go from any intersection to any other intersection moving along some of these roads.

Every day he starts walking in the city following a simple strategy; if he's at some intersection he has to pick one of the roads connected to it at random such that he hasn't walked through it before and walk through it and and if there isn't any, he stops and goes home.

His only problem is that he's afraid of dogs. He doesn't even like seeing dogs. So he's wondering in the worst scenario, how many dogs he'll have to see during his walk until he stops if he starts walking at some intersection. Can you help him?

Input

The input starts with an integer T (1 <= T <= 10), the number of test cases. following T blocks describing each test case.

Each block starts with a line containing an integer n (2 <= n <= 105), the number of intersections in the city. Intersections are numbers 1 through n.

Followed by n-1 lines each containing integers u, v, (1 <= u, v <= n) and d (1 <= d <= 109), the numbers of intersections at the end of this road and the number od dogs Eagle will see walking in this road.

Output

For each test case print a line containing n integers, the ith integer represents the maximum number of dogs Eagle might see if he starts his walk at intersection i.

Example

Input:
1
4
1 2 3
3 2 4
3 4 5
Output:
12 9 7 12

题意:问树上每个点最远可以走到哪里,不能回走。

结论:先走树的直径,那么最远路的终点一定是直径的端点,所以从树的直径的端点dfs两次得到距离,较大的一个就是最远距离。

(不过我队友用DP过了此题,ORZ,后面附图。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cost[maxn<<],cnt,S,T;
long long ans[maxn],dis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cost[cnt]=d;
}
void dfs(int u,int fa)
{
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa){
dis[To[i]]=dis[u]+cost[i];
dfs(To[i],u);
}
}
}
int main()
{
int Case,N,u,v,d,i,j;
scanf("%d",&Case);
while(Case--){
scanf("%d",&N); cnt=; S=T=;
for(i=;i<=N;i++) ans[i]=Laxt[i]=;
for(i=;i<N;i++){
read(u); read(v); read(d);
add(u,v,d); add(v,u,d);
}
dis[]=; dfs(,);
for(i=;i<=N;i++) if(dis[i]>dis[S]) S=i;
dis[S]=; dfs(S,);
for(i=;i<=N;i++) {
if(dis[i]>dis[T]) T=i;
if(dis[i]>ans[i]) ans[i]=dis[i];
}
dis[T]=; dfs(T,);
for(i=;i<=N;i++)
if(dis[i]>ans[i]) ans[i]=dis[i];
for(i=;i<N;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[N]);
}
return ;
}

SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)的更多相关文章

  1. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  2. poj1985 Cow Marathon (求树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 3195   Accepted: 1596 Case ...

  3. [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)

    http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...

  4. HDU 2196 求树上所有点能到达的最远距离

    其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...

  5. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  6. 牛客小白月赛6 C 桃花 dfs 求树上最长直径

    链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红.                            ...

  7. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  8. 求树上任意一点所能到达的最远距离 - 树上dp

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  9. Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)

    LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...

随机推荐

  1. Android UI自定义Spinner下拉框(用popuwindow实现)-转

    定义出第一个图片的布局和弹出框(一个listView)的布局,,这里就不在多说了~ListView需要自己定义一个MyspinnerAdapter~做好这些准备之后,就是弹出框的实现了~  prote ...

  2. win10+Linux18.04双系统安装

    给好多可爱的妹子重装了那么多次电脑,懒得码过程,因为我一般每次都要查一查...这次来个综合版吧,超简单,无脑操作. 首先说一下我的电脑Thinkpad + 500G 硬盘 (2014年买的老电脑) 首 ...

  3. 洛谷——P2819 图的m着色问题

    P2819 图的m着色问题 题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的.图的 ...

  4. python多线程(三)

    原文:http://www.cnblogs.com/tqsummer/archive/2011/01/25/1944771.html 一.Python中的线程使用: Python中使用线程有两种方式: ...

  5. [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 3396  Solved: 1568[Submit][Statu ...

  6. LeetCode:926. 将字符串翻转到单调递增

    暴力法超时:思想:动态规划 public int minFlipsMonoIncrb(String S) { int result = S.length(); for (int i = 0; i &l ...

  7. Java服务器获取客户端的ip

    原文:http://www.open-open.com/code/view/1454133120089 /** * 获取登录用户IP地址 * * @param request * @return */ ...

  8. gdb源码安装,指定使用的python版本

    gdb调试python的时候,需要根据不同的python版本2.6.2.7.3.x安装相应的gdb: 如何指定关联的python版本? 下面gdb源码,解压后,进入目录: ./configure -h ...

  9. 推断dxf文件的版本号

    打开DXF參考手冊,在DXF參考手冊中,点击"索引"-->输入"HEADER",在ACADVER字段有acd的版本号信息: 以下是用C语言,写的推断dxf ...

  10. IE8.0登录Oracle EBS后报Oracle error 1403错

    IE8.0登录Oracle EBS后报错,登录页面打开没有问题.只是输入username和password然后登录,遇到下面错误: <PRE>Oracle error 1403: java ...