SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)
Eagle (AKA Mohamed Ahmed) lives in a city consists of n intersections connected by n-1 roads, in a way that can go from any intersection to any other intersection moving along some of these roads.
Every day he starts walking in the city following a simple strategy; if he's at some intersection he has to pick one of the roads connected to it at random such that he hasn't walked through it before and walk through it and and if there isn't any, he stops and goes home.
His only problem is that he's afraid of dogs. He doesn't even like seeing dogs. So he's wondering in the worst scenario, how many dogs he'll have to see during his walk until he stops if he starts walking at some intersection. Can you help him?
Input
The input starts with an integer T (1 <= T <= 10), the number of test cases. following T blocks describing each test case.
Each block starts with a line containing an integer n (2 <= n <= 105), the number of intersections in the city. Intersections are numbers 1 through n.
Followed by n-1 lines each containing integers u, v, (1 <= u, v <= n) and d (1 <= d <= 109), the numbers of intersections at the end of this road and the number od dogs Eagle will see walking in this road.
Output
For each test case print a line containing n integers, the ith integer represents the maximum number of dogs Eagle might see if he starts his walk at intersection i.
Example
Input:
1
4
1 2 3
3 2 4
3 4 5
Output:
12 9 7 12
题意:问树上每个点最远可以走到哪里,不能回走。
结论:先走树的直径,那么最远路的终点一定是直径的端点,所以从树的直径的端点dfs两次得到距离,较大的一个就是最远距离。
(不过我队友用DP过了此题,ORZ,后面附图。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cost[maxn<<],cnt,S,T;
long long ans[maxn],dis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cost[cnt]=d;
}
void dfs(int u,int fa)
{
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa){
dis[To[i]]=dis[u]+cost[i];
dfs(To[i],u);
}
}
}
int main()
{
int Case,N,u,v,d,i,j;
scanf("%d",&Case);
while(Case--){
scanf("%d",&N); cnt=; S=T=;
for(i=;i<=N;i++) ans[i]=Laxt[i]=;
for(i=;i<N;i++){
read(u); read(v); read(d);
add(u,v,d); add(v,u,d);
}
dis[]=; dfs(,);
for(i=;i<=N;i++) if(dis[i]>dis[S]) S=i;
dis[S]=; dfs(S,);
for(i=;i<=N;i++) {
if(dis[i]>dis[T]) T=i;
if(dis[i]>ans[i]) ans[i]=dis[i];
}
dis[T]=; dfs(T,);
for(i=;i<=N;i++)
if(dis[i]>ans[i]) ans[i]=dis[i];
for(i=;i<N;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[N]);
}
return ;
}
SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)的更多相关文章
- cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!
2450. 距离 ★★ 输入文件:distance.in 输出文件:distance.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...
- poj1985 Cow Marathon (求树的直径)
Cow Marathon Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 3195 Accepted: 1596 Case ...
- [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)
http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...
- HDU 2196 求树上所有点能到达的最远距离
其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...
- POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12276 Accepted: 3886 Description ...
- 牛客小白月赛6 C 桃花 dfs 求树上最长直径
链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红. ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- 求树上任意一点所能到达的最远距离 - 树上dp
A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...
- Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)
LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...
随机推荐
- jQuery插件封装系列(一)—— 金额录入框
基于jQuery原型封装数值录入框,禁止录入.粘贴非数值字符 (function ($) { // 数值输入框 $.fn.numbox = function (options) { var type ...
- git status检测不到文件变化
SourceTree(Git)无法检测新增文件的解决方法 有时候使用git管理软件SourceTree会遇到往项目里新增了文件,软件却没有任何反应的问题,这多发生在git合并出错而只能重新git的情况 ...
- POJ 2125 最小点权覆盖集(输出方案)
题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...
- vue搭建cli脚手架环境(出现问题及解决,主要是node版本低)
Vue 提供了一个官方的cli,为单页面应用 (SPA) 快速搭建繁杂的脚手架. 一.vue cli脚手架 脚手架通过webpack搭建开发环境 使用ES6语法 打包压缩js为一个文件 项目文件在环境 ...
- python多线程(二)
原文:http://blog.sina.com.cn/s/blog_4b5039210100esc1.html 基础不必多讲,还是直接进入python. Python代码代码的执行由python虚拟机 ...
- Maven配置将war包部署到Tomcat(tomcat7-maven-plugin)
Tomcat7/8: 提示:经过测试Tomcat7的配置和插件在Tomcat8中能正常运行 tomcat7-maven-plugin官方帮助文档:http://tomcat.apache.org/ma ...
- Go -- 性能优化
今日头条使用 Go 语言构建了大规模的微服务架构,本文结合 Go 语言特性着重讲解了并发,超时控制,性能等在构建微服务中的实践. 今日头条当前后端服务超过80%的流量是跑在 Go 构建的服务上.微服务 ...
- Android判断屏幕锁屏的方法总结
由于做一个项目,需要判断屏幕是否锁屏,发现网上方法很多,但是比较杂,现在进行总结一下: 总共有两类方法: 一.代码直接判定 二.接收广播 现在先说第一类方法(代码直接判定): 1.通过PowerMan ...
- Intel Active Management Technology
http://en.wikipedia.org/wiki/Intel_Active_Management_Technology Intel Active Management Technology F ...
- CXF、Spring整合的SOAP Web Service服务端
1.建工程,导入CXFjar包 2.服务接口 package com.cxf.soap; import java.util.List; import javax.jws.WebService; @We ...