Eagle (AKA Mohamed Ahmed) lives in a city consists of n intersections connected by n-1 roads, in a way that can go from any intersection to any other intersection moving along some of these roads.

Every day he starts walking in the city following a simple strategy; if he's at some intersection he has to pick one of the roads connected to it at random such that he hasn't walked through it before and walk through it and and if there isn't any, he stops and goes home.

His only problem is that he's afraid of dogs. He doesn't even like seeing dogs. So he's wondering in the worst scenario, how many dogs he'll have to see during his walk until he stops if he starts walking at some intersection. Can you help him?

Input

The input starts with an integer T (1 <= T <= 10), the number of test cases. following T blocks describing each test case.

Each block starts with a line containing an integer n (2 <= n <= 105), the number of intersections in the city. Intersections are numbers 1 through n.

Followed by n-1 lines each containing integers u, v, (1 <= u, v <= n) and d (1 <= d <= 109), the numbers of intersections at the end of this road and the number od dogs Eagle will see walking in this road.

Output

For each test case print a line containing n integers, the ith integer represents the maximum number of dogs Eagle might see if he starts his walk at intersection i.

Example

Input:
1
4
1 2 3
3 2 4
3 4 5
Output:
12 9 7 12

题意:问树上每个点最远可以走到哪里,不能回走。

结论:先走树的直径,那么最远路的终点一定是直径的端点,所以从树的直径的端点dfs两次得到距离,较大的一个就是最远距离。

(不过我队友用DP过了此题,ORZ,后面附图。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cost[maxn<<],cnt,S,T;
long long ans[maxn],dis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cost[cnt]=d;
}
void dfs(int u,int fa)
{
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa){
dis[To[i]]=dis[u]+cost[i];
dfs(To[i],u);
}
}
}
int main()
{
int Case,N,u,v,d,i,j;
scanf("%d",&Case);
while(Case--){
scanf("%d",&N); cnt=; S=T=;
for(i=;i<=N;i++) ans[i]=Laxt[i]=;
for(i=;i<N;i++){
read(u); read(v); read(d);
add(u,v,d); add(v,u,d);
}
dis[]=; dfs(,);
for(i=;i<=N;i++) if(dis[i]>dis[S]) S=i;
dis[S]=; dfs(S,);
for(i=;i<=N;i++) {
if(dis[i]>dis[T]) T=i;
if(dis[i]>ans[i]) ans[i]=dis[i];
}
dis[T]=; dfs(T,);
for(i=;i<=N;i++)
if(dis[i]>ans[i]) ans[i]=dis[i];
for(i=;i<N;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[N]);
}
return ;
}

SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)的更多相关文章

  1. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  2. poj1985 Cow Marathon (求树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 3195   Accepted: 1596 Case ...

  3. [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)

    http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...

  4. HDU 2196 求树上所有点能到达的最远距离

    其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...

  5. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  6. 牛客小白月赛6 C 桃花 dfs 求树上最长直径

    链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红.                            ...

  7. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  8. 求树上任意一点所能到达的最远距离 - 树上dp

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  9. Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)

    LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...

随机推荐

  1. 一起来学Spring Cloud | 第五章:熔断器 ( Hystrix)

    在微服务项目中,一个系统可以分割成很多个不同的服务模块,不同模块之间我们通常需要进行相互调用.springcloud中可以使用RestTemplate+Ribbon和Feign来调用(工作中基本都是使 ...

  2. ZOJ - 4016 Mergeable Stack (STL 双向链表)

    [传送门]http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4016 [题目大意]初始有n个空栈,现在有如下三种操作: (1) ...

  3. Java中循环与选择语句

    public class Ifelse{ public static void main(String [] args){ int score=98; if(score>=90&& ...

  4. VS2017不能生成Database Unit Test项目

    问题描述: VS2017生成Database Unit Test项目时,报出如下错误,但该项目在VS2015中能正常生成: 主要是因为下面两个程序集找不到引用: Microsoft.Data.Tool ...

  5. pycharm整体缩进的快捷键

    选中多行,按tab进行缩进,按tab+shift去除缩进

  6. 【嵌入式Linux+ARM】GPIO操作

    1.GPIO介绍 GPIO(general purpose i/o ports)意思为通用输入/输出端口,通俗的说就是一些引脚. 我们可以通过它们输出高低电平 或 读入引脚的状态. s3c2440中有 ...

  7. 阿里云OSS 图片处理api(custom)

    阿里云OSS 图片处理api(custom) 阿里云对象存储服务(Object Storage Service, 简称OSS) 学习了:https://blog.csdn.net/u014559227 ...

  8. PAT 1003 Sharing (25)

    题目描写叙述 To store English words, one method is to use linked lists and store a word letter by letter. ...

  9. CentOS安装Openfire服务

    原文::http://xiao987334176.blog.51cto.com/2202382/979677 系统是全新新安装的系统.版本号是Centos 5.6 x86 同步北京时间 # ntpda ...

  10. SQL数据库 更改数据类型

    向表中添加数据 alter table 表名 add 列名 类型 更改表中列的数据类型 alter table 表名 alter column 列名 类型 删除表中的指定列 alter table 表 ...