C. Points on Plane

On a plane are n points (xiyi) with integer coordinates between 0 and 106. The distance between the two points with numbers a and bis said to be the following value:  (the distance calculated by such formula is called Manhattan distance).

We call a hamiltonian path to be some permutation pi of numbers from 1 to n. We say that the length of this path is value .

Find some hamiltonian path with a length of no more than 25 × 108. Note that you do not have to minimize the path length.

Input

The first line contains integer n (1 ≤ n ≤ 106).

The i + 1-th line contains the coordinates of the i-th point: xi and yi (0 ≤ xi, yi ≤ 106).

It is guaranteed that no two points coincide.

Output

Print the permutation of numbers pi from 1 to n — the sought Hamiltonian path. The permutation must meet the inequality .

If there are multiple possible answers, print any of them.

It is guaranteed that the answer exists.

Sample test(s)
input
5
0 7
8 10
3 4
5 0
9 12
output
4 3 1 2 5 
Note

In the sample test the total distance is:

(|5 - 3| + |0 - 4|) + (|3 - 0| + |4 - 7|) + (|0 - 8| + |7 - 10|) + (|8 - 9| + |10 - 12|) = 2 + 4 + 3 + 3 + 8 + 3 + 1 + 2 = 26

题意:给你一个1e6*1e6的图,上面有n个点,定义dist距离,求一条任意路径使得dist总和不超过 25*1e8

题解:分块思想,讲1e6分成1000份,x(1000*(k-1)<=x<=1000*k)每份对y单调递增,对于一份,在y轴上产生价值最多1e6,1000份就是1e9.

在x轴上,假设所有点分布在一份上,则最多是1e9,如果任意分布最多也是1e9

总的来说就是2*1e9,可行

///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a));
#define TS printf("111111\n");
#define FOR(i,a,b) for( int i=a;i<=b;i++)
#define FORJ(i,a,b) for(int i=a;i>=b;i--)
#define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define inf 100000
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//****************************************
#define maxn 1000000+10 pair<pair<int ,int >,int > P[maxn];
int main()
{ int n=read();
int x,y;
FOR(i,,n)
{
x=read();
y=read();
P[i].first.first=x/;//注意
P[i].first.second=y;
P[i].second=i;
}
sort(P+,P+n+);
FOR(i,,n)
{
cout<<P[i].second<<" ";
}
return ;
}

代码

Codeforces Round #319 (Div. 1)C. Points on Plane 分块思想的更多相关文章

  1. Codeforces Round #319 (Div. 1) C. Points on Plane 分块

    C. Points on Plane Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/576/pro ...

  2. 构造 - Codeforces Round #319 (Div. 1)C. Points on Plane

    Points on Plane Problem's Link Mean: 在二维坐标中给定n个点,求一条哈密顿通路. analyse: 一开始忽略了“无需保证路径最短”这个条件,一直在套最短哈密顿通路 ...

  3. Codeforces Round #319 (Div. 2) E - Points on Plane

    题目大意:在一个平面里有n个点,点坐标的值在1-1e6之间,让你给出一个遍历所有点的顺序,要求每个点走一次,且 曼哈顿距离之和小于25*1e8. 思路:想了一会就有了思路,我们可以把1e6的x,y坐标 ...

  4. Codeforces Round #486 (Div. 3) D. Points and Powers of Two

    Codeforces Round #486 (Div. 3) D. Points and Powers of Two 题目连接: http://codeforces.com/group/T0ITBvo ...

  5. Codeforces Round 319 # div.1 & 2 解题报告

    Div. 2 Multiplication Table (577A) 题意: 给定n行n列的方阵,第i行第j列的数就是i*j,问有多少个格子上的数恰为x. 1<=n<=10^5, 1< ...

  6. codeforces 576c// Points on Plane// Codeforces Round #319(Div. 1)

    题意:有n个点,找到一个顺序走遍这n个点,并且曼哈顿距离不超过25e8. 由于给的点坐标都在0-1e6之间.将x轴分成1000*1000,即1000长度为1块.将落在同一块的按y排序,编号为奇的块和偶 ...

  7. Codeforces Round #466 (Div. 2) -A. Points on the line

    2018-02-25 http://codeforces.com/contest/940/problem/A A. Points on the line time limit per test 1 s ...

  8. Codeforces Round #245 (Div. 2) A. Points and Segments (easy) 贪心

    A. Points and Segments (easy) Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

  9. Codeforces Round #466 (Div. 2) A. Points on the line[数轴上有n个点,问最少去掉多少个点才能使剩下的点的最大距离为不超过k。]

    A. Points on the line time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. JS实现LOGO像雪花一样落下特效

    <HTML><HEAD><TITLE>LOGO从上落下</TITLE> <SCRIPT language=JavaScript> //窗口改 ...

  2. python学习笔记(5)—— tuple 本质探究

    >>> t=(1,2,3,['a','b','c'],4,5) >>> t[3][0]='x' >>> t (1, 2, 3, ['x', 'b' ...

  3. java虚拟机(四)--内存溢出、内存泄漏、SOF

    学习了java运行时数据区,知道每个内存区域保存什么数据,可以参考:https://www.cnblogs.com/huigelaile/p/diamondshine.html,然后了 解内存溢出和内 ...

  4. vue基础---表单输入绑定

    [一]基础用法 用 v-model 指令在表单 <input>.<textarea> 及 <select> 元素上创建双向数据绑定.它会根据控件类型自动选取正确的方 ...

  5. 17Oracle Database 维护

    Oracle Database 维护 备份 还原

  6. block:cfq 学习02

    From: https://blog.csdn.net/vanbreaker/article/details/8308766 前文介绍了CFQ调度器的一些概念和结构之间的关系,这里再结合实际的代码,来 ...

  7. checkbox prop无效问题

    因为bootstrap插件问题,需要先获取input的上级元素,然后添加checked $("input[name='checkInput']").parent().addClas ...

  8. js 的静态获取和动态获取

    静态获取方法 document.getElementById obj.querySelector obj.querySelectorAll 动态获取方法(每次使用时候会回去重新获取一次) obj.ge ...

  9. 「 Luogu P1231 」 教辅的组成

    题目大意 有 $\text{N1}$ 本书 $\text{N2}$本练习册 $\text{N3}$本答案,一本书只能和一本练习册和一本答案配对.给你一些书和练习册,书和答案的可能的配对关系.问你最多可 ...

  10. LVS集群的三种工作模式

    LVS的三种工作模式: 1)VS/NAT模式(Network address translation) 2)VS/TUN模式(tunneling) 3)DR模式(Direct routing) 1.N ...