scikit-learn:3. Model selection and evaluation
參考:http://scikit-learn.org/stable/model_selection.html
有待翻译,敬请期待:
- 3.1. Cross-validation: evaluating estimator performance
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275
- 3.2. Grid Search: Searching for estimator parameters
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47100091
- 3.2.1. Exhaustive Grid Search
- 3.2.2. Randomized Parameter
Optimization - 3.2.3. Tips for parameter search
- 3.2.4. Alternatives
to brute force parameter search- 3.2.4.1. Model specific cross-validation
- 3.2.4.1.1. sklearn.linear_model.ElasticNetCV
- 3.2.4.1.2. sklearn.linear_model.LarsCV
- 3.2.4.1.3. sklearn.linear_model.LassoCV
- 3.2.4.1.4. sklearn.linear_model.LassoLarsCV
- 3.2.4.1.5. sklearn.linear_model.LogisticRegressionCV
- 3.2.4.1.6. sklearn.linear_model.MultiTaskElasticNetCV
- 3.2.4.1.7. sklearn.linear_model.MultiTaskLassoCV
- 3.2.4.1.8. sklearn.linear_model.OrthogonalMatchingPursuitCV
- 3.2.4.1.9. sklearn.linear_model.RidgeCV
- 3.2.4.1.10. sklearn.linear_model.RidgeClassifierCV
- 3.2.4.2. Information Criterion
- 3.2.4.3. Out of Bag Estimates
- 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier
- 3.2.4.3.2. sklearn.ensemble.RandomForestRegressor
- 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier
- 3.2.4.3.4. sklearn.ensemble.ExtraTreesRegressor
- 3.2.4.3.5. sklearn.ensemble.GradientBoostingClassifier
- 3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor
- 3.2.4.1. Model specific cross-validation
- 3.3. Model evaluation: quantifying the quality of predictions
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47121611
- 3.3.1.
The scoring parameter: defining model evaluation rules - 3.3.2. Classification metrics
- 3.3.2.1. From
binary to multiclass and multilabel - 3.3.2.2. Accuracy score
- 3.3.2.3. Confusion matrix
- 3.3.2.4. Classification report
- 3.3.2.5. Hamming loss
- 3.3.2.6. Jaccard
similarity coefficient score - 3.3.2.7. Precision, recall
and F-measures - 3.3.2.8. Hinge loss
- 3.3.2.9. Log loss
- 3.3.2.10. Matthews correlation
coefficient - 3.3.2.11. Receiver
operating characteristic (ROC) - 3.3.2.12. Zero one loss
- 3.3.2.1. From
- 3.3.3. Multilabel ranking
metrics - 3.3.4. Regression metrics
- 3.3.5. Clustering metrics
- 3.3.6. Dummy estimators
- 3.3.1.
- 3.4. Model persistence
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47143539
- 3.5. Validation curves: plotting scores to evaluate models
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47144197
scikit-learn:3. Model selection and evaluation的更多相关文章
- 学习笔记之Model selection and evaluation
学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection ...
- Scikit-learn:模型选择Model selection
http://blog.csdn.net/pipisorry/article/details/52250983 选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 转:机器学习 规则化和模型选择(Regularization and model selection)
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Spark2 Model selection and tuning 模型选择与调优
Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 机器学习 Regularization and model selection
Regularization and model selection 假设我们为了一个学习问题尝试从几个模型中选择一个合适的模型.例如,我们可能用一个多项式回归模型hθ(x)=g(θ0+θ1x+θ2x ...
随机推荐
- jsencrypt加解密 &&cryptico
npm install --save jsencrypt import {JSEncrypt} from 'jsencrypt'; //导入公钥if ( publicKey.indexOf('---- ...
- vue -vantUI tab切换时 list组件不触发load事件解决办法
最近由于公司项目需要,用vue写了几个简单的页面.用到了vantUI List 列表 瀑布流滚动加载,用于控制长列表的展示 当列表即将滚动到底部时,会触发事件并加载更多列表项. (页面加载完成后默认会 ...
- http返回状态码错误
415 数据格式不正确 415 Unsupported Media Type 服务器无法处理请求附带的媒体格式 后台用json接收 1.将表单数据转换成json数据 2.设置contentType:& ...
- mysql崩溃恢复
mysql进程崩溃. 杀掉所有mysql进程,在my.cnf文件中写入innodb_recover_force=1,强制并忽略任何错误启动数据库. 用mysqldump导出所有数据,在新机器上部署好m ...
- linux配置固定ip
vi /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPROTO=static ONBOOT=yes 其他默认即可 重启network服务
- Notepad++ 连接远程 FTP 进行文件编辑
一.下载安装 Notepad++ 1.下载 Notepad++ : https://pan.baidu.com/s/1o7VrS4y 密码 : ck8a 2.安装 Notepad++ 2.1.勾选所有 ...
- javaWeb学习之 Filter过滤器----https://www.cnblogs.com/xdp-gacl/p/3948353.html
https://www.cnblogs.com/xdp-gacl/p/3948353.html
- noip模拟赛 少女
分析:每个连通块都是独立的,对一个连通块进行分析.如果边数>点数,显然是不可能的,因为每条边要分配给一个点,至少有一个点分配了两次以上.如果边数=点数,就形成了环,有两种方案,顺时针一个环,逆时 ...
- 567. Permutation in String
Problem statement: Given two strings s1 and s2, write a function to return true if s2 contains the p ...
- 592. Fraction Addition and Subtraction
Problem statement: Given a string representing an expression of fraction addition and subtraction, y ...