scikit-learn:3. Model selection and evaluation
參考:http://scikit-learn.org/stable/model_selection.html
有待翻译,敬请期待:
- 3.1. Cross-validation: evaluating estimator performance
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275
- 3.2. Grid Search: Searching for estimator parameters
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47100091
- 3.2.1. Exhaustive Grid Search
- 3.2.2. Randomized Parameter
Optimization - 3.2.3. Tips for parameter search
- 3.2.4. Alternatives
to brute force parameter search- 3.2.4.1. Model specific cross-validation
- 3.2.4.1.1. sklearn.linear_model.ElasticNetCV
- 3.2.4.1.2. sklearn.linear_model.LarsCV
- 3.2.4.1.3. sklearn.linear_model.LassoCV
- 3.2.4.1.4. sklearn.linear_model.LassoLarsCV
- 3.2.4.1.5. sklearn.linear_model.LogisticRegressionCV
- 3.2.4.1.6. sklearn.linear_model.MultiTaskElasticNetCV
- 3.2.4.1.7. sklearn.linear_model.MultiTaskLassoCV
- 3.2.4.1.8. sklearn.linear_model.OrthogonalMatchingPursuitCV
- 3.2.4.1.9. sklearn.linear_model.RidgeCV
- 3.2.4.1.10. sklearn.linear_model.RidgeClassifierCV
- 3.2.4.2. Information Criterion
- 3.2.4.3. Out of Bag Estimates
- 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier
- 3.2.4.3.2. sklearn.ensemble.RandomForestRegressor
- 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier
- 3.2.4.3.4. sklearn.ensemble.ExtraTreesRegressor
- 3.2.4.3.5. sklearn.ensemble.GradientBoostingClassifier
- 3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor
- 3.2.4.1. Model specific cross-validation
- 3.3. Model evaluation: quantifying the quality of predictions
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47121611
- 3.3.1.
The scoring parameter: defining model evaluation rules - 3.3.2. Classification metrics
- 3.3.2.1. From
binary to multiclass and multilabel - 3.3.2.2. Accuracy score
- 3.3.2.3. Confusion matrix
- 3.3.2.4. Classification report
- 3.3.2.5. Hamming loss
- 3.3.2.6. Jaccard
similarity coefficient score - 3.3.2.7. Precision, recall
and F-measures - 3.3.2.8. Hinge loss
- 3.3.2.9. Log loss
- 3.3.2.10. Matthews correlation
coefficient - 3.3.2.11. Receiver
operating characteristic (ROC) - 3.3.2.12. Zero one loss
- 3.3.2.1. From
- 3.3.3. Multilabel ranking
metrics - 3.3.4. Regression metrics
- 3.3.5. Clustering metrics
- 3.3.6. Dummy estimators
- 3.3.1.
- 3.4. Model persistence
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47143539
- 3.5. Validation curves: plotting scores to evaluate models
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47144197
scikit-learn:3. Model selection and evaluation的更多相关文章
- 学习笔记之Model selection and evaluation
学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection ...
- Scikit-learn:模型选择Model selection
http://blog.csdn.net/pipisorry/article/details/52250983 选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 转:机器学习 规则化和模型选择(Regularization and model selection)
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Spark2 Model selection and tuning 模型选择与调优
Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 机器学习 Regularization and model selection
Regularization and model selection 假设我们为了一个学习问题尝试从几个模型中选择一个合适的模型.例如,我们可能用一个多项式回归模型hθ(x)=g(θ0+θ1x+θ2x ...
随机推荐
- 拼字符串 showArray.push(data); showArray.join(",")
//---// var showColumns = getShowColsRows("table");// var showArray = [];// $.each(showCol ...
- element-UI el-table表格根据搜索条件表格值改变颜色
Part.1 关键代码 var s = "天气"; // 需要匹配的字符 var reg = new RegExp("(" + s + ")" ...
- js 发送短信验证码倒计时
html <input type="button" id="btn" value="免费获取验证码" onclick="se ...
- vue props传值方法
<template> <div class="hello"> <ul> <li v-for="(item, index) in ...
- BZOJ2212【POI2011】ROT:Tree Rotation 线段树合并
题意: 给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求叶子遍历序的逆序对最少. 分析: 求逆序对我们可以想到权值线段树,所以我们对每个点建一颗线段树(为了避免空间爆炸,采 ...
- xshell连接不了虚拟机处理方法(错误提示:Connection closing...Socket close.Connection closed by foreign host.Disconnected from remote host(localhost) at 08:47:23.)
一.问题描述:xshell连接不了虚拟机,出现错误提示:Connection closing...Socket close.Connection closed by foreign host.Disc ...
- Linux中CentOS网络配置以及与Xshell建立远程连接
为centos配置网络 (1)第一步 点开虚拟机的设置,如下图做相关的设置: 网络连接要选择桥接模式,其他的勾选就按照上图的即可,勾选完成点击确定. (2)第二步 点击VMware的编辑选项,找到“虚 ...
- ubuntu14.04 Google Chrome can not be run as root
问题如下图:
- uva 12096 The SetStack Computer(STL set的各种库函数 交集 并集 插入迭代器)
题意: 有5种操作: PUSH:加入“{}”空集合入栈. DUP:栈顶元素再入栈. UNION:出栈两个集合,取并集入栈. INTERSECT:出栈两个集合,取交集入栈. ADD:出栈两个集合,将先出 ...
- Vue如何引入icon图标
1.下载icon图标,推荐icomoon网站,里面有大量的矢量图标,也可以自定义,当然你也可以去阿里巴巴矢量图标库下载你所需要的小图标.点击进入icomoon网站点击右上角“IcoM ...