1744 格子染色

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 查看运行结果
 
 
题目描述 Description

有 n 条木板需要被粉刷。 每条木板被分为 m 个格子。 每个格子要被刷成红
色或蓝色。

输入描述 Input Description

Dizzy 每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个
格子最多只能被粉刷一次。 如果 Dizzy 只能粉刷 t 次,他最多能正确粉刷多少格
子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

输出描述 Output Description

第一行包含三个整数,n m t。 接下来有n行,每行一个长度为m的字符串,'0'表
示红色,'1'表示蓝色。

样例输入 Sample Input

3 6 3
111111
000000
001100

样例输出 Sample Output

16

数据范围及提示 Data Size & Hint

1 ≤ n,m ≤ 50 ; 0 ≤ t ≤ 2500 。

分类标签 Tags 点此展开

 
 
题解:

稍微复杂一点的划分dp

设f[i][j][k]为第i行前j个k次粉刷正确的最大值

由于每行循环使用,可以去掉第一维,但每次不要忘了清零(WA了好久)

f[j][k]=max{ f[u][j-1] + max(u+1到j的蓝色的个数,u+1到j的红颜色的个数) }

设h[i][k]为第i行分成k份的最大值

h[i][k]=f[i][m][k]

设dp[i][k]为前i行总共分成k份的最大值

dp[i][k]=dp[i-1][t-x]+h[i][x]

x表示在第i行使用x次

AC代码:

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 51
#define M 2501
int n,m,t,s1[N][N],s2[N][N],f[N][N],h[N][N],dp[N][M];
char str[N];
inline int sum1(int i,int l,int r){
return s1[i][r]-s1[i][l-];
}
inline int sum2(int i,int l,int r){
return s2[i][r]-s2[i][l-];
}
int main(){
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++){
scanf("%s",str+);
for(int j=;j<=m;j++){
s1[i][j]=s1[i][j-];
s2[i][j]=s2[i][j-];
str[j]==''?s1[i][j]++:s2[i][j]++;
}
}
for(int i=;i<=n;i++){//行
for(int j=;j<=m;j++){//前j个数
for(int k=;k<=min(t,j);k++){//分成k份
f[j][k]=;//注意f是每行重复使用的,需要清零!
for(int u=k-;u<=j-;u++){//分割点
f[j][k]=max(f[j][k],f[u][k-]+max(sum1(i,u+,j),sum2(i,u+,j)));
}
}
}
for(int k=;k<=min(t,m);k++){
h[i][k]=f[m][k];
}
}
for(int i=;i<=n;i++){
for(int k=;k<=t;k++){
for(int x=;x<=k;x++){
dp[i][k]=max(dp[i][k],dp[i-][k-x]+h[i][x]);
}
}
}
printf("%d",dp[n][t]);
return ;
}

Codevs 1744 格子染色==BZOJ 1296 粉刷匠的更多相关文章

  1. BZOJ 1296 粉刷匠

    Description windy有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. ...

  2. BZOJ 1296 粉刷匠(分组背包套DP)

    刚开始往网络流的方向想.建不出图... 因为每次只能对一行进行染色.每一行都是独立的. 对于每一行,因为格子只能染一次,所以可以发现这是一个多阶段决策问题,这个决策就是当前格子染0还是染1. 令dp[ ...

  3. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  4. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  5. BZOJ 1296(SCOI 2009) 粉刷匠

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2544 Solved: 1466 [Submit][Statu ...

  6. bzoj 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  7. 粉刷匠(bzoj 1296)

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  8. bzoj 1296: [SCOI2009]粉刷匠 动态规划

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  9. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

随机推荐

  1. 16.04 下 ufw 防火墙的的开启、禁用、开放端口、关闭端口

    16.04 下的 ufw 防火墙相关操作使用ufw命令.通过ufw --help可以查看所有相关命令. 打开防火墙 sudo ufw enable 重启防火墙 sudo ufw reload 打开指定 ...

  2. 面试之Linux

    Linux的体系结构 体系结构主要分为用户态(用户上层活动)和内核态 内核:本质是一段管理计算机硬件设备的程序 系统调用:内核的访问接口,是一种不能再简化的操作 公用函数库:系统调用的组合拳 Shel ...

  3. Spring中操作日志记录web请求的body报文

    在spring中,通常可以使用切面编程方式对web请求记录操作日志.但是这种方式存在一个问题,那就是只能记录url中的请求参数,无法记录POST或者PUT请求的报文体,因为报文体是放在request对 ...

  4. 每日命令:(12)sar

    sar(System Activity Reporter系统活动情况报告)是目前 Linux 上最为全面的系统性能分析工具之一,可以从多方面对系统的活动进行报告, 包括:文件的读写情况.系统调用的使用 ...

  5. jQuery对table排序

    <script> //col对应列,cmp两数比较方法,返回值为TRUE,FALSE function sort(col, cmp) { var table = $("#test ...

  6. virtualenvwrapper.sh: There was a problem running the initialization hooks. If Python could not import the module virtualenvwrapper.hook_loader, check that virtualenvwrapper.........(解决办法)

    Linux(ubuntu)上python2与python3共存环境下,安装virtualenvwrapper后, 其环境变量被自动设置为VIRTUALENVWRAPPER_PYTHON=/usr/bi ...

  7. LeetCode(49)Group Anagrams

    题目 Given an array of strings, group anagrams together. For example, given: ["eat", "t ...

  8. 怎样签发SSL证书

    最近在做怎样让网站有SSL,搞了一天,现在总结一下 首先要安装OPENSSL和 Java的 keytool 先用OPENSSL生成私钥和CSR openssl req -newkey rsa:2048 ...

  9. Win 2003 创建 IP 安全策略来屏蔽端口的图文教程

    (本文用示例的方法讲解 IP 安全策略的设置方法,具体的设置还是要根据个人实际的需要来设置.另外 Windows Server 2008 与此类似.千一网络编辑注) IP安全性(Internet Pr ...

  10. 【Eclipse】eclipse中设置tomcat启动时候的JVM参数

    主要通过以下的几个jvm参数来设置堆内存的: -Xmx512m 最大总堆内存,一般设置为物理内存的1/4 -Xms512m 初始总堆内存,一般将它设置的和最大堆内存一样大,这样就不需要根据当前堆使用情 ...